Improving Forest Detection Using Machine Learning and Remote Sensing: A Case Study in Southeastern Serbia

被引:8
|
作者
Potic, Ivan [1 ]
Srdic, Zoran [1 ]
Vakanjac, Boris [1 ]
Bakrac, Sasa [1 ,2 ]
Dordevic, Dejan [1 ,2 ]
Bankovic, Radoje [1 ,2 ]
Jovanovic, Jasmina M. [3 ]
机构
[1] Mil Geog Inst Gen Stevan Boskovic, Belgrade 11000, Serbia
[2] Univ Def, Mil Acad, Belgrade 11000, Serbia
[3] Univ Belgrade, Fac Geog, Belgrade 11000, Serbia
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 14期
关键词
vegetation detection; remote sensing; !text type='Python']Python[!/text; machine learning; classification accuracy; Sentinel-2; GOOGLE EARTH ENGINE; GLOBAL VEGETATION; SENTINEL-2; BANDS; INDEX; CLASSIFICATION; COLOR; LEAF; LAI;
D O I
10.3390/app13148289
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Improving forest detection with machine learning in remote sensing data
    Caffaratti, Gabriel D.
    Marchetta, Martin G.
    Euillades, Leonardo D.
    Euillades, Pablo A.
    Forradellas, Raymundo Q.
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 24
  • [2] Land Cover change detection by using Remote Sensing - A Case Study of Zlatibor (Serbia)
    Jovanovic, Dusan
    Govedarica, Miro
    Sabo, Filip
    Bugarinovic, Zeljko
    Novovic, Olivera
    Beker, Teo
    Lauter, Milos
    GEOGRAPHICA PANNONICA, 2015, 19 (04): : 162 - 173
  • [3] Remote sensing based forest cover classification using machine learning
    Aziz, Gouhar
    Minallah, Nasru
    Saeed, Aamir
    Frnda, Jaroslav
    Khan, Waleed
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [4] Remote sensing based forest cover classification using machine learning
    Gouhar Aziz
    Nasru Minallah
    Aamir Saeed
    Jaroslav Frnda
    Waleed Khan
    Scientific Reports, 14
  • [5] Predicting Forest Fire Using Remote Sensing Data And Machine Learning
    Yang, Suwei
    Lupascu, Massimo
    Meel, Kuldeep S.
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 14983 - 14990
  • [6] SEAWEED PRESENCE DETECTION USING MACHINE LEARNING AND REMOTE SENSING
    Tonion, F.
    Pirotti, F.
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 1011 - 1017
  • [7] Forest Community Spatial Modeling Using Machine Learning and Remote Sensing Data
    Gafurov, Artur
    Prokhorov, Vadim
    Kozhevnikova, Maria
    Usmanov, Bulat
    REMOTE SENSING, 2024, 16 (08)
  • [8] USING MACHINE LEARNING COUPLED WITH REMOTE SENSING FOR FOREST FIRE SUSCEPTIBILITY MAPPING. CASE STUDY TETOUAN PROVINCE, NORTHERN MOROCCO
    Seddouki, Mariem
    Benayad, Mohamed
    Aamir, Zakaria
    Tahiri, Mohamed
    Maanan, Mehdi
    Rhinane, Hassan
    GEOINFORMATION WEEK 2022, VOL. 48-4, 2023, : 333 - 342
  • [9] Identification of Pasture Degradation Using Remote Sensing Data and Machine Learning: A Case Study of Obichnik
    Evstatiev, Boris
    Valova, Irena
    Kaneva, Tsvetelina
    Valov, Nikolay
    Sevov, Atanas
    Stanchev, Georgi
    Komitov, Georgi
    Zhelyazkova, Tsenka
    Gerdzhikova, Mariya
    Todorova, Mima
    Grozeva, Neli
    Saliev, Durhan
    Damyanov, Iliyan
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [10] Estimating the parameters of forest inventory using machine learning and the reduction of remote sensing features
    Tamm, Tanel
    Remm, Kalle
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2009, 11 (04): : 290 - 297