Numerical radius inequalities of sectorial matrices

被引:3
|
作者
Bhunia, Pintu [1 ]
Paul, Kallol [2 ]
Sen, Anirban [2 ]
机构
[1] Indian Inst Sci, Dept Math, Bengaluru 560012, Karnataka, India
[2] Jadavpur Univ, Dept Math, Kolkata 700032, West Bengal, India
关键词
Numerical radius; Numerical range; Accretive matrix; Sectorial matrix; OPERATORS; BOUNDS;
D O I
10.1007/s43034-023-00288-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain several upper and lower bounds for the numerical radius of sectorial matrices. We also develop several numerical radius inequalities of the sum, product and commutator of sectorial matrices. The inequalities obtained here are sharper than the existing related inequalities for general matrices. Among many other results we prove that if A is an n xn complex matrix with the numerical range W( A) satisfying W( A) subset of {re(+/- i theta) : theta(1) <= theta <= theta(2)}, where r > 0 and theta(1), theta(2). [0, pi/2], then (i) w(A) >= csc gamma/2 ||A|| + csc gamma/2 | ||(sic) (A)|| - ||(sic) (A)|| |, and (ii) w(2) (A) >= csc(2)gamma/4 || AA * + A* A || + csc(2)gamma/2 | ||(sic) (A)||(2) -||(sic) (A)||(2)|, where gamma = max{theta(2), pi/2 - theta(1)}. We also prove that if A, B are sectorial matrices with sectorial index gamma is an element of [0, pi/2) and they are double commuting, then w( AB) = <=(1 + sin(2)gamma) w( A) w(B).
引用
收藏
页数:17
相关论文
共 50 条
  • [41] ON ANDO-HIAI TYPE INEQUALITIES FOR SECTORIAL MATRICES
    Mao, Yanling
    Ji, Guoxing
    OPERATORS AND MATRICES, 2024, 18 (02): : 335 - 342
  • [42] Inequalities for Numerical Radius and Spectral Radius
    Al-Hawari, M.
    Barahmeh, Sa'ed M.
    JOURNAL OF ADVANCED MATHEMATICS AND APPLICATIONS, 2016, 5 (02) : 131 - 133
  • [43] SOME INEQUALITIES FOR THE NUMERICAL RADIUS AND RHOMBIC NUMERICAL RADIUS
    Bajmaeh, Akram Babri
    Omidvar, Mohsen Erfanian
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (04): : 569 - 577
  • [44] Further inequalities for the Α-numerical radius of certain 2 x 2 operator matrices
    Feki, Kais
    Sahoo, Satyajit
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (02) : 213 - 226
  • [45] SOME REFINEMENTS OF NUMERICAL RADIUS INEQUALITIES FOR 2 x 2 OPERATOR MATRICES
    Qiao, Hongwei
    Hai, Guojun
    Bai, Eburilitu
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02): : 425 - 444
  • [46] New A-numerical Radius Equalities and Inequalities for Certain Operator Matrices and Applications
    Daptari, Soumitra
    Kittaneh, Fuad
    Sahoo, Satyajit
    RESULTS IN MATHEMATICS, 2025, 80 (01)
  • [47] SOME GENERALIZATIONS OF NUMERICAL RADIUS INEQUALITIES FOR 2 x 2 OPERATOR MATRICES
    Yang, Chaojun
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2025, 19 (01): : 247 - 259
  • [48] NUMERICAL RADIUS INEQUALITIES OF OPERATOR MATRICES FROM A NEW NORM ON B(H)
    Bhunia, Pintu
    Bhanja, Aniket
    Sain, Debmalya
    Paul, Kallol
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (02) : 653 - 664
  • [49] Theory vs. Experiment: Multiplicative Inequalities for the Numerical Radius of Commuting Matrices
    Holbrook, John
    Schoch, Jean-Pierre
    TOPICS IN OPERATOR THEORY: OPERATORS, MATRICES AND ANALYTIC FUNCTIONS, VOL 1, 2010, 202 : 273 - +
  • [50] On A-Numerical Radius Inequalities for 2 2 Operator Matrices-II
    Sahoo, Satyajit
    FILOMAT, 2021, 35 (15) : 5237 - 5252