Numerical radius inequalities of sectorial matrices

被引:3
|
作者
Bhunia, Pintu [1 ]
Paul, Kallol [2 ]
Sen, Anirban [2 ]
机构
[1] Indian Inst Sci, Dept Math, Bengaluru 560012, Karnataka, India
[2] Jadavpur Univ, Dept Math, Kolkata 700032, West Bengal, India
关键词
Numerical radius; Numerical range; Accretive matrix; Sectorial matrix; OPERATORS; BOUNDS;
D O I
10.1007/s43034-023-00288-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain several upper and lower bounds for the numerical radius of sectorial matrices. We also develop several numerical radius inequalities of the sum, product and commutator of sectorial matrices. The inequalities obtained here are sharper than the existing related inequalities for general matrices. Among many other results we prove that if A is an n xn complex matrix with the numerical range W( A) satisfying W( A) subset of {re(+/- i theta) : theta(1) <= theta <= theta(2)}, where r > 0 and theta(1), theta(2). [0, pi/2], then (i) w(A) >= csc gamma/2 ||A|| + csc gamma/2 | ||(sic) (A)|| - ||(sic) (A)|| |, and (ii) w(2) (A) >= csc(2)gamma/4 || AA * + A* A || + csc(2)gamma/2 | ||(sic) (A)||(2) -||(sic) (A)||(2)|, where gamma = max{theta(2), pi/2 - theta(1)}. We also prove that if A, B are sectorial matrices with sectorial index gamma is an element of [0, pi/2) and they are double commuting, then w( AB) = <=(1 + sin(2)gamma) w( A) w(B).
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Numerical radius inequalities of sectorial matrices
    Pintu Bhunia
    Kallol Paul
    Anirban Sen
    Annals of Functional Analysis, 2023, 14
  • [2] More inequalities on numerical radii of sectorial matrices
    Yang, Chaojun
    AIMS MATHEMATICS, 2021, 6 (04): : 3927 - 3939
  • [3] Interpolating numerical radius inequalities for matrices
    Ahmad Al-Natoor
    Omar Hirzallah
    Fuad Kittaneh
    Advances in Operator Theory, 2024, 9
  • [4] Numerical radius inequalities for operator matrices
    Bani-Domi, Wathiq
    Kittaneh, Fuad
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (04): : 421 - 427
  • [5] Interpolating numerical radius inequalities for matrices
    Al-Natoor, Ahmad
    Hirzallah, Omar
    Kittaneh, Fuad
    ADVANCES IN OPERATOR THEORY, 2024, 9 (02)
  • [6] On Numerical Radius Inequalities for Operator Matrices
    Guelfen, Hanane
    Kittaneh, Fuad
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (11) : 1231 - 1241
  • [7] NUMERICAL RADIUS INEQUALITIES FOR OPERATOR MATRICES
    Sahoo, Satyajit
    Das, Namita
    Mishra, Debasisha
    ADVANCES IN OPERATOR THEORY, 2019, 4 (01): : 197 - 214
  • [8] Numerical radius inequalities for operator matrices
    Huang, Hong
    Zhu, Zhi-Feng
    Xu, Guo-Jin
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5362 - 5372
  • [9] On sectorial matrices and their inequalities
    Alakhrass, Mohammad
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 617 : 179 - 189
  • [10] Numerical radius inequalities of operator matrices with applications
    Bhunia, Pintu
    Bag, Santanu
    Paul, Kallol
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (09): : 1635 - 1644