Weak solutions for the Stokes system for compressible non-Newtonian fluids with unbounded divergence

被引:0
|
作者
Pokorny, Milan [1 ]
Szlenk, Maja [2 ,3 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
[2] Univ Warsaw, Fac Math, Informat & Mech, Warsaw, Poland
[3] Univ Warsaw, Fac Math, Informat & Mech, Banacha 2, PL-02097 Warsaw, Poland
关键词
compressible Stokes system; non-Newtonian fluids; power-law fluids; weak solutions; UNIQUENESS; EQUATIONS; FLOWS;
D O I
10.1002/mma.9083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence of weak solutions to a certain system of partial differential equations, modeling the behavior of a compressible non-Newtonian fluid for small Reynolds number. We construct the weak solutions despite the lack of the L infinity estimate on the divergence of the velocity field. The result was obtained by combining the regularity theory for singular operators with a certain logarithmic integral inequality for BMO BMO functions, which allowed us to adjust the method from Feireisl et al. (2015) to more relaxed conditions on the velocity.
引用
收藏
页码:9736 / 9750
页数:15
相关论文
共 50 条
  • [22] EXISTENCE AND UNIQUENESS OF STEADY WEAK SOLUTIONS TO THE NON-NEWTONIAN FLUIDS IN Rd
    Yang, Jiaqi
    COLLOQUIUM MATHEMATICUM, 2022, 168 (01) : 127 - 140
  • [23] Large-time behaviour of solutions to a class of non-Newtonian compressible fluids
    Shanshan Guo
    Zhong Tan
    Nonlinear Differential Equations and Applications NoDEA, 2017, 24
  • [24] Existence and uniqueness of strong solutions for a class of compressible non-Newtonian fluids with singularity
    Wucai Yang
    Qiu Meng
    Yuanyuan Zhao
    Ricerche di Matematica, 2023, 72 : 423 - 442
  • [25] Large-time behaviour of solutions to a class of non-Newtonian compressible fluids
    Guo, Shanshan
    Tan, Zhong
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (03):
  • [26] Existence and uniqueness of strong solutions for a class of compressible non-Newtonian fluids with singularity
    Yang, Wucai
    Meng, Qiu
    Zhao, Yuanyuan
    RICERCHE DI MATEMATICA, 2023, 72 (01) : 423 - 442
  • [27] GLOBAL WEAK SOLUTIONS TO A THREE-DIMENSIONAL COMPRESSIBLE NON-NEWTONIAN FLUID
    Fang, L., I
    Guo, Z. H. E. N. H. U. A.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (06) : 1703 - 1733
  • [28] SOLUTIONS FOR INCOMPRESSIBLE NON-NEWTONIAN FLUIDS
    BELLOUT, H
    BLOOM, F
    NECAS, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (08): : 795 - 800
  • [29] SIMILARITY SOLUTIONS FOR NON-NEWTONIAN FLUIDS
    LEE, SY
    AMES, WF
    AICHE JOURNAL, 1966, 12 (04) : 700 - &
  • [30] Global weak solutions to a Vlasov-Fokker-Planck/compressible non-Newtonian fluid system of equations
    Zhu, Huan
    Fang, Li
    Muhammad, Jan
    Guo, Zhenhua
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (04):