STABLE CATEGORIES OF SPHERICAL MODULES AND TORSIONFREE MODULES

被引:1
|
作者
Otake, Yuya [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusaku, Nagoya 4648602, Japan
关键词
n-spherical module; n-torsionfree module; stable category; totally reflexive module; grade; local cohomology; Gorenstein ring; regular ring;
D O I
10.1090/proc/16365
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Auslander and Bridger [Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969] introduced the notions of n -spherical modules and ntorsionfree modules. In this paper, we construct an equivalence between the stable category of n -spherical modules and the category of modules of grade at least n, and provide its Gorenstein analogue. As an application, we prove that if R is a Gorenstein local ring of Krull dimension d > 0, then there exists a stable equivalence between the category of (d-1)-torsionfree R -modules and the category of d -spherical modules relative to the local cohomology functor.
引用
收藏
页码:3655 / 3662
页数:8
相关论文
共 50 条
  • [1] Stable model categories are categories of modules
    Schwede, S
    Shipley, B
    [J]. TOPOLOGY, 2003, 42 (01) : 103 - 153
  • [2] On divisible and torsionfree modules
    Mao, Lixin
    Ding, Nanqing
    [J]. COMMUNICATIONS IN ALGEBRA, 2008, 36 (02) : 708 - 731
  • [3] A NOTE ON TORSIONFREE MODULES
    YUECHIMI.R
    [J]. JOURNAL OF ALGEBRA, 1969, 12 (02) : 172 - &
  • [4] TORSIONFREE PROJECTIVE MODULES
    TEPLY, ML
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 27 (01) : 29 - &
  • [5] TORSIONFREE INJECTIVE MODULES
    TEPLY, ML
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1969, 28 (02) : 441 - &
  • [6] On the subcategories of n-torsionfree modules and related modules
    Souvik Dey
    Ryo Takahashi
    [J]. Collectanea Mathematica, 2023, 74 : 113 - 132
  • [7] Notes on Divisible and Torsionfree Modules
    Mao, Lixin
    Ding, Nanqing
    [J]. COMMUNICATIONS IN ALGEBRA, 2008, 36 (12) : 4643 - 4658
  • [8] On the subcategories of n-torsionfree modules and related modules
    Dey, Souvik
    Takahashi, Ryo
    [J]. COLLECTANEA MATHEMATICA, 2023, 74 (01) : 113 - 132
  • [9] When are -syzygy modules -torsionfree?
    Matsui, Hiroki
    Takahashi, Ryo
    Tsuchiya, Yoshinao
    [J]. ARCHIV DER MATHEMATIK, 2017, 108 (04) : 351 - 355
  • [10] SOME RESULTS ON TORSIONFREE MODULES
    Hu, Jiangsheng
    Ding, Nanqing
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (01)