On the subcategories of n-torsionfree modules and related modules

被引:4
|
作者
Dey, Souvik [1 ]
Takahashi, Ryo [2 ]
机构
[1] Univ Kansas, Dept Math, 1460 Jayhawk Blvd, Lawrence, KS 66045 USA
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, Japan
关键词
Subcategory closed under direct summands/extensions/syzygies; n-torsionfree module; n-syzygy module; Serre's condition (S-n); Resolving subcategory; Totally reflexive module; Cohen-Macaulay ring; Gorenstein ring; Maximal Cohen-Macaulay module; (Auslander) transpose; RESOLVING SUBCATEGORIES; IDEALS;
D O I
10.1007/s13348-021-00338-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a commutative noetherian ring. Denote by R the category of finitely generated R-modules. In this paper, we study n-torsionfree modules in the sense of Auslander and Bridger, by comparing them with n-syzygy modules, and modules satisfying Serre's condition (S-n). We mainly investigate closedness properties of the full subcategories of R consisting of those modules.
引用
收藏
页码:113 / 132
页数:20
相关论文
共 50 条