Additive hazards model;
clustered data;
correlated failure times;
current status data;
martingale residual;
model checking;
COX MODEL;
EFFICIENT ESTIMATION;
CHECKING;
D O I:
10.1080/02664763.2022.2053950
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Clustered current status data are frequently encountered in biomedical research and other areas that require survival analysis. This paper proposes graphical and formal model assessment procedures to evaluate the goodness of fit of the additive hazards model to clustered current status data. The test statistics proposed are based on sums of martingale-based residuals. Relevant asymptotic properties are established, and empirical distributions of the test statistics can be simulated utilizing Gaussian multipliers. Extensive simulation studies confirmed that the proposed test procedures work well for practical scenarios. This proposed method applies when failure times within the same cluster are correlated, and in particular, when cluster sizes can be informative about intra-cluster correlations. The method is applied to analyze clustered current status data from a lung tumorigenicity study.
机构:
North West Univ, Unit Business Math & Informat, Potchefstroom, South Africa
Natl & Kapodistrian Univ Athens, Dept Econ, Athens, GreeceNorth West Univ, Unit Business Math & Informat, Potchefstroom, South Africa
Meintanis, Simos George
Allison, James S.
论文数: 0引用数: 0
h-index: 0
机构:
North West Univ, Unit Business Math & Informat, Potchefstroom, South AfricaNorth West Univ, Unit Business Math & Informat, Potchefstroom, South Africa
机构:
Yale Univ, Sch Publ Hlth, Div Biostat, New Haven, CT 06520 USA
Coordinating Ctr, VA Cooperat Studies Program, West Haven, CT 06516 USAYale Univ, Sch Publ Hlth, Div Biostat, New Haven, CT 06520 USA
Zhou, Bingqing
Fine, Jason
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
Univ N Carolina, Dept Stat, Chapel Hill, NC 27599 USAYale Univ, Sch Publ Hlth, Div Biostat, New Haven, CT 06520 USA
Fine, Jason
Laird, Glen
论文数: 0引用数: 0
h-index: 0
机构:
Bristol Myers Squibb Co, Wallingford, CT 06492 USAYale Univ, Sch Publ Hlth, Div Biostat, New Haven, CT 06520 USA