Evaluation of handling degrees of missingness in the features of machine learning algorithms to predict overall survival using real-world lung cancer data

被引:0
|
作者
Le, Hoa [1 ]
Qu, Pingping [1 ]
Xiong, Yan [1 ]
Tanaka, Yoko [1 ]
机构
[1] Daiichi Sankyo, Tokyo, Japan
关键词
D O I
暂无
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
905
引用
收藏
页码:423 / 423
页数:1
相关论文
共 50 条
  • [31] Predicting Clinical Remission of Chronic Urticaria Using Random Survival Forests: Machine Learning Applied to Real-World Data
    Pivneva, Irina
    Balp, Maria-Magdalena
    Geissbuhler, Yvonne
    Severin, Thomas
    Smeets, Serge
    Signorovitch, James
    Royer, Jimmy
    Liang, Yawen
    Cornwall, Tom
    Pan, Jutong
    Danyliv, Andrii
    McKenna, Sarah Jane
    Marsland, Alexander M.
    Soong, Weily
    DERMATOLOGY AND THERAPY, 2022, 12 (12) : 2747 - 2763
  • [32] Machine learning can predict lung cancer using primary care data
    Ananth, Sachin
    Navarra, Alessio
    Mogal, Rahul
    Vancheeswaran, Rama
    LUNG CANCER, 2022, 165 : S23 - S23
  • [33] Predicting recurrence of venous thromboembolism in anticoagulated cancer patients using real-world data and machine learning.
    Martin, Andres J. Munoz
    Dominguez, Sofia Huerga
    Souto, Juan Carlos
    Revuelta, Jacobo Rogado
    Sanchez, Antonio
    Garcia-Palomo, Andres
    Aparicio, Jorge
    Aguayo, Cristina
    Abad, David Gutierrez
    Ortega, Laura
    Vinuela-Beneitez, Maria Carmen
    Fanjul, Victor
    Casadevall, David
    Arumi, Daniel
    Hernandez-Presa, Miguel Angel
    JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (16) : E18742 - E18742
  • [34] Using machine learning to identify risk factors for pancreatic cancer: a retrospective cohort study of real-world data
    Su, Na
    Tang, Rui
    Zhang, Yice
    Ni, Jiaqi
    Huang, Yimei
    Liu, Chunqi
    Xiao, Yuzhou
    Zhu, Baoting
    Zhao, Yinglan
    FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [35] Machine learning based battery pack health prediction using real-world data
    Soo, Yin-Yi
    Wang, Yujie
    Xiang, Haoxiang
    Chen, Zonghai
    ENERGY, 2024, 308
  • [36] EVALUATION OF REAL-WORLD RESPONSE RATE IN CLINICAL TRIAL-ALIGNED COHORTS OF PATIENTS WITH LUNG, COLON, AND BREAST CANCER USING MACHINE LEARNING
    Zhang, Q.
    Krismer, K.
    Wang, X.
    Fullerton, C.
    Dolor, A.
    Wade, N. B.
    Baruah, P.
    Yim, E.
    Williams, T.
    Yuan, Q.
    Wilkinson, S.
    Nemeth, S.
    Singh, N.
    Wang, M.
    Richey, M.
    Cohen, A. B.
    Fidyk, E.
    Blarre, A.
    Magee, K.
    VALUE IN HEALTH, 2024, 27 (06) : S274 - S274
  • [37] A scoping review of fair machine learning techniques when using real-world data
    Huang, Yu
    Guo, Jingchuan
    Chen, Wei -Han
    Lin, Hsin-Yueh
    Tang, Huilin
    Wang, Fei
    Xu, Hua
    Bian, Jiang
    JOURNAL OF BIOMEDICAL INFORMATICS, 2024, 151
  • [38] A scoping review of fair machine learning techniques when using real-world data
    Huang, Yu
    Guo, Jingchuan
    Chen, Wei-Han
    Lin, Hsin-Yueh
    Tang, Huilin
    Wang, Fei
    Xu, Hua
    Bian, Jiang
    Journal of Biomedical Informatics, 2024, 151
  • [39] Nomogram-based parameters to predict overall survival in a real-world advanced cancer population undergoing palliative care
    Zhao, Weiwei
    He, Zhiyong
    Li, Yintao
    Jia, Huixun
    Chen, Menglei
    Gu, Xiaoli
    Liu, Minghui
    Zhang, Zhe
    Wu, Zhenyu
    Cheng, Wenwu
    BMC PALLIATIVE CARE, 2019, 18 (1)
  • [40] Nomogram-based parameters to predict overall survival in a real-world advanced cancer population undergoing palliative care
    Weiwei Zhao
    Zhiyong He
    Yintao Li
    Huixun Jia
    Menglei Chen
    Xiaoli Gu
    Minghui Liu
    Zhe Zhang
    Zhenyu Wu
    Wenwu Cheng
    BMC Palliative Care, 18