Moduli Spaces for the Fifth Painlevé Equation

被引:0
|
作者
Van Der Put, Marius [1 ]
Top, Jaap [1 ]
机构
[1] Bernoulli Inst, Nijenborgh 9, NL-9747 AG Groningen, Netherlands
关键词
moduli space for linear connections; irregular singularities; Stokes matrices; monodromy spaces; isomonodromic deformations; Painleve equations; ORDINARY DIFFERENTIAL-EQUATIONS; DEFORMATION;
D O I
10.3842/SIGMA.2023.068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Isomonodromy for the fifth Painleve equation P5 is studied in detail in the context of certain moduli spaces for connections, monodromy, the Riemann-Hilbert morphism, and Okamoto-Painleve spaces. This involves explicit formulas for Stokes matrices and parabolic structures. The rank 4 Lax pair for P5, introduced by Noumi-Yamada et al., is shown to be induced by a natural fine moduli space of connections of rank 4. As a byproduct one obtains a polynomial Hamiltonian for P5, equivalent to the one of Okamoto.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] A Computational Exploration of the Second Painlevé Equation
    Bengt Fornberg
    J. A. C. Weideman
    Foundations of Computational Mathematics, 2014, 14 : 985 - 1016
  • [32] A Computational Exploration of the Second Painlev, Equation
    Fornberg, Bengt
    Weideman, J. A. C.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2014, 14 (05) : 985 - 1016
  • [33] Tronquee Solutions of the Painlev, Equation PI
    Costin, O.
    Costin, R. D.
    Huang, M.
    CONSTRUCTIVE APPROXIMATION, 2015, 41 (03) : 467 - 494
  • [34] Numerical solution of the Painlevé V equation
    A. A. Abramov
    L. F. Yukhno
    Computational Mathematics and Mathematical Physics, 2013, 53 : 44 - 56
  • [35] Numerical solution of the Painlevé VI equation
    A. A. Abramov
    L. F. Yukhno
    Computational Mathematics and Mathematical Physics, 2013, 53 : 180 - 193
  • [36] Hypergeometric Solutions to an Ultradiscrete Painlevé Equation
    Christopher M. Ormerod
    Journal of Nonlinear Mathematical Physics, 2010, 17 : 87 - 102
  • [37] Numerical solution of the Painlevé IV equation
    A. A. Abramov
    L. F. Yukhno
    Computational Mathematics and Mathematical Physics, 2012, 52 : 1565 - 1573
  • [38] Rational Solutions for the Discrete Painlevé Ⅱ Equation
    赵玲玲
    商朋见
    数学季刊, 1999, (03) : 24 - 29
  • [39] Hamiltonians associated with the sixth Painlevé equation
    V. V. Tsegel’nik
    Theoretical and Mathematical Physics, 2007, 151 : 482 - 491
  • [40] Some results of ϖ-Painlevé difference equation
    Yong Liu
    Yuqing Zhang
    Advances in Difference Equations, 2018