The influence of staggered V-grooves on the hydrothermal performance of a rectangular-channel flow is systematically investigated through a combination of numerical and experimental approaches. The 3-D numerical simulation is developed adopting computational fluid dynamics (CFD) (ANSYS FLUENT) for a range of Reynolds numbers (Re) from 100 to 1000. The experiments are conducted on straight and V-grooved channels (with pitch-to-height and height-to-hydraulic diameter ratios of 2 and 0.75) for distilled water under constant wall heat flux conditions to validate the computa-tional model. Additionally, the impact of V-shaped groove arrangements, forward V-grooved channel (FVGCH) and backward V-grooved channel (B-VGCH), on the flow and heat fields, as well as the effect of groove depths (d = 1.5, 2.5, and 3.5 mm), are also studied. In both experimental and nu-merical results, the performance evaluation criterion (PEC) grows with rising Reynolds numbers. The highest PEC values of the numerical and experimental findings for the F-VGCH are 2.18 and 2.29, respectively, at Re = 1000. Whereas the highest PEC values of the numerical and experimental results for the B-VGCH are 1.81 and 1.96, respectively, at the same Re (Re = 1000). In addition, the values of PEC for F-VGCH are greater than the PEC values of B-VGCH for all examined groove depths over the entire range of Reynolds numbers. Thus, the F-VGCH offers the best performance evaluation criterion in comparison with B-VGCH.