Existence and Ulam-Hyers Stability Results for a System of Coupled Generalized Liouville-Caputo Fractional Langevin Equations with Multipoint Boundary Conditions

被引:9
|
作者
Awadalla, Muath [1 ]
Subramanian, Muthaiah [2 ]
Abuasbeh, Kinda [1 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Math & Stat, Al Hasa 31982, Saudi Arabia
[2] KPR Inst Engn & Technol, Dept Math, Coimbatore 641407, Tamilnadu, India
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 01期
关键词
coupled system; Langevin equations; generalized fractional integrals; generalized fractional derivatives; stability; existence; fixed point; DIFFERENTIAL-EQUATIONS; RIEMANN-LIOUVILLE; ORDER;
D O I
10.3390/sym15010198
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the existence and uniqueness of solutions for coupled Langevin differential equations of fractional order with multipoint boundary conditions involving generalized Liouville-Caputo fractional derivatives. Furthermore, we discuss Ulam-Hyers stability in the context of the problem at hand. The results are shown with examples. Results are asymmetric when a generalized Liouville-Caputo fractional derivative (rho) parameter is changed.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Beam deflection coupled systems of fractional differential equations: existence of solutions, Ulam-Hyers stability and travelling waves
    Bensassa, Kamel
    Dahmani, Zoubir
    Rakah, Mahdi
    Sarikaya, Mehmet Zeki
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (02)
  • [42] Ulam-Hyers stability for conformable fractional integro-differential impulsive equations with the antiperiodic boundary conditions
    Wan, Fan
    Liu, Xiping
    Jia, Mei
    AIMS MATHEMATICS, 2022, 7 (04): : 6066 - 6083
  • [43] On the existence and Ulam-Hyers stability for implicit fractional differential equation via fractional integral-type boundary conditions
    El-Sayed, Ahmed Mohamad
    Al-Issa, Shorouk Mahmoud
    El Miari, Maysaa Mohamad
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [44] Ulam-Hyers stability results for a novel nonlinear Nabla Caputo fractional variable-order difference system
    LUO, Danfeng
    ABDELJAWAD, Thabet
    LUO, Zhiguo
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (01) : 456 - 470
  • [45] On the Existence and Ulam-Hyers Stability of a New Class of Partial (φ, χ)-Fractional Differential Equations With Impulses
    Seemab, Arjumand
    Rehman, Mujeeb ur
    Feckan, Michal
    Alzabut, Jehad
    Abbas, Syed
    FILOMAT, 2021, 35 (06) : 1977 - 1991
  • [46] Existence Results for the System of Fractional-Order Sequential Integrodifferential Equations via Liouville-Caputo Sense
    Awadalla, Muath
    Murugesan, Manigandan
    Muthaiah, Subramanian
    Alahmadi, Jihan
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [47] Existence and β-Ulam-Hyers stability for a class of fractional differential equations with non-instantaneous impulses
    Yu, Xiulan
    ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 13
  • [48] β-Ulam-Hyers Stability and Existence of Solutions for Non-Instantaneous Impulsive Fractional Integral Equations
    Du, Wei-Shih
    Feckan, Michal
    Kostic, Marko
    Velinov, Daniel
    FRACTAL AND FRACTIONAL, 2024, 8 (08)
  • [49] Analysis of Caputo-Type Non-Linear Fractional Differential Equations and Their Ulam-Hyers Stability
    Girgin, Ekber
    Buyukkaya, Abdurrahman
    Kuru, Neslihan Kaplan
    Younis, Mudasir
    Ozturk, Mahpeyker
    FRACTAL AND FRACTIONAL, 2024, 8 (10)
  • [50] Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system
    Muthaiah, Subramanian
    Murugesan, Manigandan
    Awadalla, Muath
    Unyong, Bundit
    Egami, Ria H.
    AIMS MATHEMATICS, 2024, 9 (06): : 16203 - 16233