Existence and Ulam-Hyers Stability Results for a System of Coupled Generalized Liouville-Caputo Fractional Langevin Equations with Multipoint Boundary Conditions

被引:9
|
作者
Awadalla, Muath [1 ]
Subramanian, Muthaiah [2 ]
Abuasbeh, Kinda [1 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Math & Stat, Al Hasa 31982, Saudi Arabia
[2] KPR Inst Engn & Technol, Dept Math, Coimbatore 641407, Tamilnadu, India
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 01期
关键词
coupled system; Langevin equations; generalized fractional integrals; generalized fractional derivatives; stability; existence; fixed point; DIFFERENTIAL-EQUATIONS; RIEMANN-LIOUVILLE; ORDER;
D O I
10.3390/sym15010198
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the existence and uniqueness of solutions for coupled Langevin differential equations of fractional order with multipoint boundary conditions involving generalized Liouville-Caputo fractional derivatives. Furthermore, we discuss Ulam-Hyers stability in the context of the problem at hand. The results are shown with examples. Results are asymmetric when a generalized Liouville-Caputo fractional derivative (rho) parameter is changed.
引用
收藏
页数:20
相关论文
共 50 条