A multi-scale global attention network for blood vessel segmentation from fundus images

被引:11
|
作者
Gao, Ge [1 ,2 ]
Li, Jianyong [3 ]
Yang, Lei [1 ,2 ]
Liu, Yanhong [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Robot Percept & Control Engn Lab, Zhengzhou 450001, Henan, Peoples R China
[3] Zhengzhou Univ Light Ind, Coll Comp & Commun Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Retinal vessels segmentation; Deep learning; U-Net network; Global context attention; RETINAL IMAGES; NET;
D O I
10.1016/j.measurement.2023.113553
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate segmentation of retinal fundus vessel images is vital to clinical diagnosis. Due to the intricate vascular morphology, high noise and low contrast of fundus vessel images, retinal fundus vessel segmentation is still a challenging task, especially for thin vessel segmentation. In recent years, on account of strong context feature extraction ability of deep learning, it has shown a remarkable performance in the automatic segmentation of retinal fundus vessels. However, it still exhibits certain limitations, such as information loss on micro objects or details, inadequate treatment of local features, etc. Faced with these challenging factors, we present a new multi-scale global attention network (MGA-Net). To realize effective feature representation, a dense attention U-Net network is proposed. Meanwhile, we design a global context attention (GCA) block to realize multi-scale feature fusion, allowing the global features from the deep network layers to flow to the shallow network layers. Further, aimed at retinal fundus vessel segmentation task again the class imbalance issue, the AG block is also introduced. Related experiments are conducted on CHASE_DB1, DRIVE and STARE datasets to show the effectiveness of proposed segmentation model. The experimental results demonstrate the robustness of the proposed method with Ft exceeding 82% on all three datasets and effectively improve the segmentation performance of thin vessels. The source code of proposed MGA-Net is available at https://github.com/gegao310/workspace.git.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Automatic multi-tissue segmentation in pancreatic pathological images with selected multi-scale attention network
    Gao, Enting
    Jiang, Hui
    Zhou, Zhibang
    Yang, Changxing
    Chen, Muyang
    Zhu, Weifang
    Shi, Fei
    Chen, Xinjian
    Zheng, Jian
    Bian, Yun
    Xiang, Dehui
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 151
  • [42] MIC-Net: multi-scale integrated context network for automatic retinal vessel segmentation in fundus image
    Wang, Jinke
    Zhou, Lubiao
    Yuan, Zhongzheng
    Wang, Haiying
    Shi, Changfa
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (04) : 6912 - 6931
  • [43] Blood Vessel Segmentation In Fundus Images And Detection Of Glaucoma
    LekshmiShyam
    Kumar, G. S.
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORKS (COMNET), 2016, : 34 - 38
  • [44] Robust Blood Vessel Segmentation Algorithm for Fundus Images
    Salih, N. D.
    Saleh, Marwan D.
    6TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (ICRAIE), 2021,
  • [45] A Multi-scale and Multi-attention Network for Skin Lesion Segmentation
    Wu, Cong
    Zhang, Hang
    Chen, Dingsheng
    Gan, Haitao
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT IV, 2024, 14450 : 537 - 550
  • [46] Multi-Scale Attention Convolutional Network for Masson Stained Bile Duct Segmentation from Liver Pathology Images
    Su, Chun-Han
    Chung, Pau-Choo
    Lin, Sheng-Fung
    Tsai, Hung-Wen
    Yang, Tsung-Lung
    Su, Yu-Chieh
    SENSORS, 2022, 22 (07)
  • [47] Parallel multi-scale network with attention mechanism for pancreas segmentation
    Long, Jianwu
    Song, Xinlei
    An, Yong
    Li, Tong
    Zhu, Jiangzhou
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (01) : 110 - 119
  • [48] Adaptive multi-scale dual attention network for semantic segmentation
    Wang, Weizhen
    Wang, Suyu
    Li, Yue
    Jin, Yishu
    NEUROCOMPUTING, 2021, 460 : 39 - 49
  • [49] Attention based multi-scale parallel network for polyp segmentation
    Song, Pengfei
    Li, Jinjiang
    Fan, Hui
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [50] MSCNN-AM: A Multi-Scale Convolutional Neural Network With Attention Mechanisms for Retinal Vessel Segmentation
    Fu, Qilong
    Li, Shuqiu
    Wang, Xin
    IEEE ACCESS, 2020, 8 : 163926 - 163936