A multi-scale global attention network for blood vessel segmentation from fundus images

被引:5
|
作者
Gao, Ge [1 ,2 ]
Li, Jianyong [3 ]
Yang, Lei [1 ,2 ]
Liu, Yanhong [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Robot Percept & Control Engn Lab, Zhengzhou 450001, Henan, Peoples R China
[3] Zhengzhou Univ Light Ind, Coll Comp & Commun Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Retinal vessels segmentation; Deep learning; U-Net network; Global context attention; RETINAL IMAGES; NET;
D O I
10.1016/j.measurement.2023.113553
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate segmentation of retinal fundus vessel images is vital to clinical diagnosis. Due to the intricate vascular morphology, high noise and low contrast of fundus vessel images, retinal fundus vessel segmentation is still a challenging task, especially for thin vessel segmentation. In recent years, on account of strong context feature extraction ability of deep learning, it has shown a remarkable performance in the automatic segmentation of retinal fundus vessels. However, it still exhibits certain limitations, such as information loss on micro objects or details, inadequate treatment of local features, etc. Faced with these challenging factors, we present a new multi-scale global attention network (MGA-Net). To realize effective feature representation, a dense attention U-Net network is proposed. Meanwhile, we design a global context attention (GCA) block to realize multi-scale feature fusion, allowing the global features from the deep network layers to flow to the shallow network layers. Further, aimed at retinal fundus vessel segmentation task again the class imbalance issue, the AG block is also introduced. Related experiments are conducted on CHASE_DB1, DRIVE and STARE datasets to show the effectiveness of proposed segmentation model. The experimental results demonstrate the robustness of the proposed method with Ft exceeding 82% on all three datasets and effectively improve the segmentation performance of thin vessels. The source code of proposed MGA-Net is available at https://github.com/gegao310/workspace.git.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A Multi-Scale Residual Attention Network for Retinal Vessel Segmentation
    Jiang, Yun
    Yao, Huixia
    Wu, Chao
    Liu, Wenhuan
    [J]. SYMMETRY-BASEL, 2021, 13 (01): : 1 - 16
  • [2] A Multi-Scale Attention Fusion Network for Retinal Vessel Segmentation
    Wang, Shubin
    Chen, Yuanyuan
    Yi, Zhang
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [3] Multi-Scale Residual U-Net Fundus Blood Vessel Segmentation Based on Attention Mechanism
    Zhao Feng
    Zhong Beibei
    Liu Hanqiang
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (18)
  • [4] Vessel Segmentation in Fundus Images with Multi-Scale Feature Extraction and Disentangled Representation
    Zhong, Yuanhong
    Chen, Ting
    Zhong, Daidi
    Liu, Xiaoming
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [5] Spatial multi-scale attention U-improved network for blood vessel segmentation
    Cui, Ying
    Su, Jingjing
    Zhu, Jia
    Chen, Liwei
    Zhang, Guang
    Gao, Shan
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (06) : 2857 - 2865
  • [6] Spatial multi-scale attention U-improved network for blood vessel segmentation
    Ying Cui
    Jingjing Su
    Jia Zhu
    Liwei Chen
    Guang Zhang
    Shan Gao
    [J]. Signal, Image and Video Processing, 2023, 17 : 2857 - 2865
  • [7] Vessel Segmentation in Coloured Retinal Fundus Images Based on Multi-scale Analysis
    Dastgheib, Mohammad Ali
    Seyedin, Sanaz
    [J]. 2018 4TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2018, : 201 - 205
  • [8] IMFF-Net: An integrated multi-scale feature fusion network for accurate retinal vessel segmentation from fundus images
    Liu, Mingtao
    Wang, Yunyu
    Wang, Lei
    Hu, Shunbo
    Wang, Xing
    Ge, Qingman
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 91
  • [9] Retinal Vessel Segmentation Method Based on Multi-Scale Attention Analytic Network
    Luo Wenjie
    Han Guoqing
    Tian Xuedong
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (20)
  • [10] Learning multi-scale deep fusion for retinal blood vessel extraction in fundus images
    Upadhyay, Kamini
    Agrawal, Monika
    Vashist, Praveen
    [J]. VISUAL COMPUTER, 2023, 39 (10): : 4445 - 4457