Accelerated ion transportation in liquid crystalline polymer networks for superior solid-state lithium metal batteries

被引:13
|
作者
Wang, Meng [1 ]
Zhang, Hu [1 ]
Li, Yewen [1 ]
Liu, Ruiping [1 ]
Yang, Huai [2 ,3 ]
机构
[1] China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
[2] Peking Univ, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100871, Peoples R China
[3] Peking Univ, Sch Mat Sci & Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state electrolyte; Lithium-metal batteries; Liquid crystalline polymer; Topological network structure; High transference number(tLi plus ); ELECTROLYTES;
D O I
10.1016/j.cej.2023.146658
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The application of solid polymer electrolyte in high energy density lithium metal batteries is limited by low Li+ mobility, low ionic conductivity and poor cycle stability at room temperature. In the study, the free-standing flexible polymeric electrolytes (PCREs) with semi-interpenetrating-network in the topological nanostructures were fabricated through the in-situ UV-photopolymerization of the liquid crystalline monomers and poly (ethylene glycol) diglycidyl ether. Remarkably, by optimizing the relative proportion of the two liquid crystalline monomers with different methylene chains as connected bridge band between rigid center and terminal acrylate functional groups, the electrochemical properties of the prepared PCREs were successfully improved, which might contributed to the suitable ion transport channels in the porous polymer network structures. The prepared PCRE exhibited increased ion migration number, excellent ionic conductivity and a wide electrochemical window. Through the calculation of density functional theory and molecular dynamics simulation, the difference in the molecular orbital of liquid crystalline polymers and the mechanism of PCREs enhancement tLi+ were well understood. The study may provide new perspectives for the design and fabrication of high-performance polymer electrolyte materials, which will promote the development and practical application of the all-solid lithium metal batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A near-single-ion conducting polymer-in-ceramic electrolyte for solid-state lithium metal batteries with superior cycle stability and rate capability
    Zheng, Zhuoyuan
    Zhou, Xianlong
    Zhu, ZhengFeng
    Zhou, Jie
    Zhong, Guoqiang
    Yao, Wangbing
    Zhu, Yusong
    Chemical Engineering Journal, 2024, 500
  • [32] Mechanisms of the Accelerated Li+ Conduction in MOF-Based Solid-State Polymer Electrolytes for All-Solid-State Lithium Metal Batteries
    Duan, Song
    Qian, Lanting
    Zheng, Yun
    Zhu, Yanfei
    Liu, Xiang
    Dong, Li
    Yan, Wei
    Zhang, Jiujun
    ADVANCED MATERIALS, 2024, 36 (32)
  • [33] Safety perceptions of solid-state lithium metal batteries
    Wang, Li
    Chen, Zonghai
    Liu, Yan
    Li, Yuan
    Zhang, Hao
    He, Xiangming
    ETRANSPORTATION, 2023, 16
  • [34] Perovskite Solid-State Electrolytes for Lithium Metal Batteries
    Yan, Shuo
    Yim, Chae-Ho
    Pankov, Vladimir
    Bauer, Mackenzie
    Baranova, Elena
    Weck, Arnaud
    Merati, Ali
    Abu-Lebdeh, Yaser
    BATTERIES-BASEL, 2021, 7 (04):
  • [35] Interfacial Defect of Lithium Metal in Solid-State Batteries
    Yang, Menghao
    Mo, Yifei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (39) : 21494 - 21501
  • [36] Challenges in Lithium Metal Anodes for Solid-State Batteries
    Hatzell, Kelsey B.
    Chen, Xi Chelsea
    Cobb, Corie L.
    Dasgupta, Neil P.
    Dixit, Marm B.
    Marbella, Lauren E.
    McDowell, Matthew T.
    Mukherjee, Partha P.
    Verma, Ankit
    Viswanathan, Venkatasubramanian
    Westover, Andrew S.
    Zeier, Wolfgang G.
    ACS ENERGY LETTERS, 2020, 5 (03) : 922 - 934
  • [37] Protecting Lithium Metal Anodes in Solid-State Batteries
    Zhong, Yuxi
    Yang, Xiaoyu
    Guo, Ruiqi
    Zhai, Liqing
    Wang, Xinran
    Wu, Feng
    Wu, Chuan
    Bai, Ying
    ELECTROCHEMICAL ENERGY REVIEWS, 2024, 7 (01)
  • [38] All solid-state polymer electrolytes for high-performance lithium ion batteries
    Yue, Liping
    Ma, Jun
    Zhang, Jianjun
    Zhao, Jingwen
    Dong, Shanmu
    Liu, Zhihong
    Cui, Guanglei
    Chen, Liquan
    ENERGY STORAGE MATERIALS, 2016, 5 : 139 - 164
  • [39] Recent progress in polymer garnet composite electrolytes for solid-state lithium metal batteries
    Rajamani, Arunkumar
    Panneerselvam, Thamayanthi
    Abraham, Sona Elsin
    Murugan, Ramaswamy
    Sivaprakasam, Sivaraman
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (14): : 3185 - 3212
  • [40] Mesoscale polymer regulation for fast-charging solid-state lithium metal batteries
    Ma, Yuetao
    Chen, Likun
    Li, Yuhang
    Li, Boyu
    An, Xufei
    Cheng, Xing
    Su, Hai
    Yang, Ke
    Xiao, Guanyou
    Zhao, Yang
    Han, Zhuo
    Guo, Shaoke
    Mi, Jinshuo
    Shi, Peiran
    Liu, Ming
    He, Yan-Bing
    Kang, Feiyu
    ENERGY & ENVIRONMENTAL SCIENCE, 2025,