Generalized extended Mittag-Leffler function and its properties pertaining to integral transforms and fractional calculus

被引:3
|
作者
Padma, A. [1 ]
Rao, M. Ganeshwara [1 ]
Shimelis, Biniyam [2 ,3 ]
机构
[1] Chaitanya Bharathi Inst Technol, Dept Math, Hyderabad, Telangana, India
[2] Wollo Univ, Dept Math, Dessie, Ethiopia
[3] Wollo Univ, Coll Nat Sci, Dept Math, PO Box 1145, Dessie, Ethiopia
来源
RESEARCH IN MATHEMATICS | 2023年 / 10卷 / 01期
关键词
primary; 26A33; 33C05; 33C20; secondary; 33C65; 33C90; OPERATORS;
D O I
10.1080/27684830.2023.2220205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We aim to introduce extended generalized Mittag-Leffler function (EGMLF) via the extended Beta function and obtain certain integral and differential representation of them. Further, we present some formulas of the Riemann--Liouville fractional integration and differentiation operators. Also, we derive various integral transforms, including Euler transform, Laplace transform, Whittakar transform and K-transform. The operator and transform images are expressed in terms of the Wright generalized hypergoemetrichypergeometric type function. Interesting special cases of the main results are also considered.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Generalizations of some fractional integral inequalities via generalized Mittag-Leffler function
    Abbas, Ghulam
    Khan, Khuram Ali
    Farid, Ghulam
    Rehman, Atiq Ur
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [42] On the Generalized Mittag-Leffler Function and its Application in a Fractional Telegraph Equation
    Camargo, Rubens Figueiredo
    de Oliveira, Edmundo Capelas
    Vaz, Jayme, Jr.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (01) : 1 - 16
  • [43] Fractional Integrations of a Generalized Mittag-Leffler Type Function and Its Application
    Nisar, Kottakkaran Sooppy
    MATHEMATICS, 2019, 7 (12)
  • [44] On the Generalized Mittag-Leffler Function and its Application in a Fractional Telegraph Equation
    Rubens Figueiredo Camargo
    Edmundo Capelas de Oliveira
    Jayme Vaz
    Mathematical Physics, Analysis and Geometry, 2012, 15 : 1 - 16
  • [45] Integral Equations Involving Generalized Mittag-Leffler Function
    R. Desai
    I. A. Salehbhai
    A. K. Shukla
    Ukrainian Mathematical Journal, 2020, 72 : 712 - 721
  • [46] Computing the Matrix Mittag-Leffler Function with Applications to Fractional Calculus
    Roberto Garrappa
    Marina Popolizio
    Journal of Scientific Computing, 2018, 77 : 129 - 153
  • [47] Integral Equations Involving Generalized Mittag-Leffler Function
    Desai, R.
    Salehbhai, I. A.
    Shukla, A. K.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (05) : 712 - 721
  • [48] Fractional calculus formulas for Mathieu-type series and generalized Mittag-Leffler function
    Khan, Owais
    Araci, Serkan
    Saif, Mohd
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 20 (02): : 122 - 130
  • [49] On Refinement of Bounds of Fractional Integral Operators Containing Extended Generalized Mittag-Leffler Functions
    Demirel, Ayse Kuebra
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (03): : 279 - 300
  • [50] Fractional differential equations for the generalized Mittag-Leffler function
    Agarwal, Praveen
    Al-Mdallal, Qasem
    Cho, Yeol Je
    Jain, Shilpi
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,