Choosing the best value of shape parameter in radial basis functions by Leave-P-Out Cross Validation

被引:2
|
作者
Yaghouti, Mohammad Reza [1 ]
Farshadmoghadam, Farnaz [1 ]
机构
[1] Univ Guilan, Fac Math Sci, Rasht, Iran
来源
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS | 2023年 / 11卷 / 01期
关键词
Radial basis functions; Shape parameter; Leave-One-Out cross validation; Leave-Two-Out cross validation; Approximate moving least squares; LEAST-SQUARES APPROXIMATION; SCATTERED DATA; INTERPOLATION;
D O I
10.22034/CMDE.2022.46208.1939
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The radial basis functions (RBFs) meshless method has high accuracy for the interpolation of scattered data in high dimensions. Most of the RBFs depend on a parameter, called shape parameter which plays a significant role to specify the accuracy of the RBF method. In this paper, we present three algorithms to choose the optimal value of the shape parameter. These are based on Rippa's theory to remove data points from the data set and results obtained by Fasshauer and Zhang for the iterative approximate moving least square (AMLS) method. Numerical experiments confirm stable solutions with high accuracy compared to other methods.
引用
收藏
页码:108 / 129
页数:22
相关论文
共 33 条
  • [11] Energy based approach for shape parameter selection in radial basis functions collocation method
    Iurlaro, L.
    Gherlone, M.
    Di Sciuva, M.
    COMPOSITE STRUCTURES, 2014, 107 : 70 - 78
  • [12] On the search of the shape parameter in radial basis functions using univariate global optimization methods
    Cavoretto, R.
    De Rossi, A.
    Mukhametzhanov, M. S.
    Sergeyev, Ya. D.
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (02) : 305 - 327
  • [13] Model for Choosing the Shape Parameter in the Multiquadratic Radial Basis Function Interpolation of an Arbitrary Sine Wave and Its Application
    Sun, Jian
    Wang, Ling
    Gong, Dianxuan
    MATHEMATICS, 2023, 11 (08)
  • [14] An Experimental Study of Univariate Global Optimization Algorithms for Finding the Shape Parameter in Radial Basis Functions
    Mukhametzhanov, Marat S.
    Cavoretto, Roberto
    De Rossi, Alessandra
    OPTIMIZATION AND APPLICATIONS, OPTIMA 2019, 2020, 1145 : 326 - 339
  • [15] Searching for an optimal shape parameter for solving a partial differential equation with the radial basis functions method
    Urleb, Marko
    Vrankar, Leopold
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 92 : 225 - 230
  • [16] Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction
    Hao Cheng
    Dorian J.Garrick
    Rohan L.Fernando
    Journal of Animal Science and Biotechnology, 2017, 8 (03) : 733 - 737
  • [17] Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction
    Cheng, Hao
    Garrick, Dorian J.
    Fernando, Rohan L.
    JOURNAL OF ANIMAL SCIENCE AND BIOTECHNOLOGY, 2017, 8
  • [18] Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction
    Hao Cheng
    Dorian J. Garrick
    Rohan L. Fernando
    Journal of Animal Science and Biotechnology, 8
  • [19] Cross validation of best linear unbiased predictions of breeding values using an efficient leave-one-out strategy
    Cheng, Jian
    Fernando, Rohan
    Dekkers, Jack C.
    JOURNAL OF ANIMAL SCIENCE, 2020, 98 : 10 - 10
  • [20] Selection of shape parameter in radial basis functions for solution of time-fractional Black-Scholes models
    Haq, Sirajul
    Hussain, Manzoor
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 335 : 248 - 263