Photonic Max-Pooling for Deep Neural Networks Using a Programmable Photonic Platform

被引:4
|
作者
Ashtiani, Farshid [1 ]
On, Mehmet Berkay [1 ,2 ]
Sanchez-Jacome, David [3 ]
Perez-Lopez, Daniel [3 ]
Yoo, S. J. Ben [2 ]
Blanco-Redondo, Andrea [1 ]
机构
[1] Nokia Bell Labs, 600 Mt Ave, Murray Hill, NJ 07974 USA
[2] Univ Calif Davis, Dept Elect & Comp Engn, 1 Shields Ave, Davis, CA 95616 USA
[3] iPron Programmable Photon, Avenida Blasco Ibanez 25, Valencia 46010, Spain
关键词
D O I
10.1364/OFC.2023.M1J.6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a photonic max-pooling architecture for photonic neural networks which is compatible with integrated photonic platforms. As a proof of concept, we have experimentally demonstrated the max-pooling function on a programmable photonic platform consisting of a hexagonal mesh of Mach-Zehnder interferometers. (C) 2022 The Author(s)
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Photonic neural networks
    Damien Woods
    Thomas J. Naughton
    Nature Physics, 2012, 8 : 257 - 259
  • [22] Iterative optimization of photonic crystal nanocavity designs by using deep neural networks
    Asano, Takashi
    Noda, Susumu
    NANOPHOTONICS, 2019, 8 (12) : 2243 - 2256
  • [23] Statistical theory for image classification using deep convolutional neural network with cross-entropy loss under the hierarchical max-pooling model
    Kohler, Michael
    Langer, Sophie
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2025, 234
  • [24] DeepTrain: A Programmable Embedded Platform for Training Deep Neural Networks
    Kim, Duckhwan
    Na, Taesik
    Yalamanchili, Sudhakar
    Mukhopadhyay, Saibal
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2018, 37 (11) : 2360 - 2370
  • [25] Predictions of a model of spatial attention using sum- and max-pooling functions
    Hamker, FH
    NEUROCOMPUTING, 2004, 56 : 329 - 343
  • [26] Experimental demonstration of online learning in deep photonic neural networks
    Li, Xi
    Biswas, Disha
    Zhou, Peng
    Brigner, Wesley H.
    Friedman, Joseph S.
    Gu, Qing
    2023 IEEE PHOTONICS CONFERENCE, IPC, 2023,
  • [27] An Electro-Photonic System for Accelerating Deep Neural Networks
    Demirkiran, Cansu
    Eris, Furkan
    Wang, Gongyu
    Elmhurst, Jonathan
    Moore, Nick
    Harris, Nicholas C.
    Basumallik, Ayon
    Reddi, Vijay Janapa
    Joshi, Ajay
    Bunandar, Darius
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2023, 19 (04)
  • [28] Asymmetrical estimator for training encapsulated deep photonic neural networks
    Wang, Yizhi
    Chen, Minjia
    Yao, Chunhui
    Ma, Jie
    Yan, Ting
    Penty, Richard
    Cheng, Qixiang
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [29] Training Deep Photonic Convolutional Neural Networks With Sinusoidal Activations
    Passalis, Nikolaos
    Mourgias-Alexandris, George
    Tsakyridis, Apostolos
    Pleros, Nikos
    Tefas, Anastasios
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2021, 5 (03): : 384 - 393
  • [30] A Programmable, Multi-Format Photonic Transceiver Platform Enabling Flexible Optical Networks
    Dris, S.
    Vanhoecke, M.
    Aimone, A.
    Apostolopoulos, D.
    Lazarou, I.
    Demeester, P.
    Bauwelinck, J.
    Gotz, G.
    Wahlbrink, T.
    Magri, R.
    Papafili, I.
    Agapiou, G.
    Avramopoulos, H.
    2015 17TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2015,