Photonic Max-Pooling for Deep Neural Networks Using a Programmable Photonic Platform

被引:4
|
作者
Ashtiani, Farshid [1 ]
On, Mehmet Berkay [1 ,2 ]
Sanchez-Jacome, David [3 ]
Perez-Lopez, Daniel [3 ]
Yoo, S. J. Ben [2 ]
Blanco-Redondo, Andrea [1 ]
机构
[1] Nokia Bell Labs, 600 Mt Ave, Murray Hill, NJ 07974 USA
[2] Univ Calif Davis, Dept Elect & Comp Engn, 1 Shields Ave, Davis, CA 95616 USA
[3] iPron Programmable Photon, Avenida Blasco Ibanez 25, Valencia 46010, Spain
关键词
D O I
10.1364/OFC.2023.M1J.6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a photonic max-pooling architecture for photonic neural networks which is compatible with integrated photonic platforms. As a proof of concept, we have experimentally demonstrated the max-pooling function on a programmable photonic platform consisting of a hexagonal mesh of Mach-Zehnder interferometers. (C) 2022 The Author(s)
引用
收藏
页数:3
相关论文
共 50 条
  • [1] FAST IMAGE SCANNING WITH DEEP MAX-POOLING CONVOLUTIONAL NEURAL NETWORKS
    Giusti, Alessandro
    Ciresan, Dan C.
    Masci, Jonathan
    Gambardella, Luca M.
    Schmidhuber, Juergen
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 4034 - 4038
  • [2] A lightweight Max-Pooling method and architecture for Deep Spiking Convolutional Neural Networks
    Duy-Anh Nguyen
    Xuan-Tu Tran
    Dang, Khanh N.
    Iacopi, Francesca
    APCCAS 2020: PROCEEDINGS OF THE 2020 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2020), 2020, : 209 - 212
  • [3] Max-Pooling Dropout for Regularization of Convolutional Neural Networks
    Wu, Haibing
    Gu, Xiaodong
    NEURAL INFORMATION PROCESSING, PT I, 2015, 9489 : 46 - 54
  • [4] Deep Scattering Network with Max-pooling
    Ki, Taekyung
    Hur, Youngmi
    2021 DATA COMPRESSION CONFERENCE (DCC 2021), 2021, : 348 - 348
  • [5] Steel Defect Classification with Max-Pooling Convolutional Neural Networks
    Masci, Jonathan
    Meier, Ueli
    Ciresan, Dan
    Schmidhuber, Juergen
    Fricout, Gabriel
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [6] Using photonic reservoirs as preprocessors for deep neural networks
    Bauwens, Ian
    Van der Sande, Guy
    Bienstman, Peter
    Verschaffelt, Guy
    Frontiers in Physics, 2022, 10
  • [7] Using photonic reservoirs as preprocessors for deep neural networks
    Bauwens, Ian
    van der Sande, Guy
    Bienstman, Peter
    Verschaffelt, Guy
    FRONTIERS IN PHYSICS, 2022, 10
  • [8] A RRAM based Max-Pooling Scheme for Convolutional Neural Network
    Ling, Yaotian
    Wang, Zongwei
    Yang, Yunfan
    Yu, Zhizhen
    Zheng, Qilin
    Qin, Yabo
    Cai, Yimao
    Huang, Ru
    2021 5TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE (EDTM), 2021,
  • [9] Learning with Deep Photonic Neural Networks
    Leelar, Bhawani Shankar
    Shivaleela, E. S.
    Srinivas, T.
    2017 IEEE WORKSHOP ON RECENT ADVANCES IN PHOTONICS (WRAP), 2017,
  • [10] Max-Pooling Convolutional Neural Network for Chinese Digital Gesture Recognition
    Zhao Qian
    Li Yawei
    Zhu Mengyu
    Yang Yuliang
    Xiao Ling
    Xu Chunyu
    Li Lin
    INFORMATION TECHNOLOGY AND INTELLIGENT TRANSPORTATION SYSTEMS, VOL 2, 2017, 455 : 79 - 89