Global Coronal Magnetic Field Estimation Using Bayesian Inference

被引:0
|
作者
Baweja, Upasna [1 ,2 ]
Pant, Vaibhav [1 ]
Arregui, Inigo [3 ,4 ]
机构
[1] Aryabhatta Res Inst Observat Sci, Naini Tal 263001, India
[2] Mahatma Jyotiba Phule Rohilkhand Univ, Bareilly 243006, Uttar Pradesh, India
[3] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Tenerife, Spain
[4] Univ La Laguna, Dept Astrofis, E-38206 San Cristobal la Laguna, Tenerife, Spain
来源
ASTROPHYSICAL JOURNAL | 2024年 / 963卷 / 01期
基金
美国国家科学基金会;
关键词
LOOP OSCILLATIONS; SOLAR CORONA; TRANSVERSE OSCILLATIONS; TRANSITION-REGION; ATOMIC DATABASE; ALFVENIC WAVES; SEISMOLOGY; PULSATIONS; DENSITY; MISSION;
D O I
10.3847/1538-4357/ad1b57
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Estimating the magnetic field strength in the solar corona is crucial for understanding different physical processes happening over diverse spatiotemporal scales. However, the high temperatures and low density of the solar corona make this task challenging. The coronal magnetic field is too weak to produce a measurable splitting of the spectral lines using the Zeeman effect, and high temperature causes spectral lines to become weak and broad, making it difficult to detect the small Zeeman splitting. Coronal magneto-seismology, which combines the theoretical and observed properties of magnetohydrodynamic waves, can be used to infer the magnetic field strength of oscillating structures in the solar corona, which are otherwise difficult to estimate. In this work, we use the Doppler velocity and density data obtained from the Coronal Multichannel Polarimeter on 2016 October 14 to obtain the global map of the coronal magnetic field using Bayesian inference. Two priors are used for plasma density, viz Gaussian and uniform distributions. Bayesian inference provides us with the probability distribution for the magnetic field strength at each location from 1.05 to 1.35 R circle dot. A comparison between the magnetic field obtained using simple inversion and Bayesian inference is also drawn. We find that the values obtained using simple inversion do not always match the maximum posterior estimates obtained using Bayesian inference. We find that the inferred values follow a power-law function for the radial variation of the coronal magnetic field, with the power-law indices for simple and Bayesian inversion being similar.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Quantum Bayesian inference for parameter estimation using quantum generative model
    Ohno, Hiroshi
    [J]. QUANTUM INFORMATION PROCESSING, 2023, 22 (01)
  • [32] Copula parameter estimation using Bayesian inference for pipe data analysis
    Atique, Farzana
    Attoh-Okine, Nii
    [J]. CANADIAN JOURNAL OF CIVIL ENGINEERING, 2018, 45 (01) : 61 - 70
  • [33] A probabilistic estimation approach for the failure forecast method using Bayesian inference
    O'Dowd, Niall M.
    Madarshahian, Ramin
    Leung, Michael Siu Hey
    Corcoran, Joseph
    Todd, Michael D.
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2021, 142
  • [34] Turbulent Schmidt number for source term estimation using Bayesian inference
    Xue, Fei
    Li, Xiaofeng
    Ooka, Ryozo
    Kikumoto, Hideki
    Zhang, Weirong
    [J]. BUILDING AND ENVIRONMENT, 2017, 125 : 414 - 422
  • [35] WIDE ESTIMATION OF DYNAMIC PROPERTIES OF VISCOELASTIC MATERIALS USING BAYESIAN INFERENCE
    Balbino, Fernanda Oliveira
    Preve, Cintia Teixeira
    Munaro, Marilda
    Ribeiro Junior, Paulo Justiniano
    de Oliveira Lopes, Eduardo Marcio
    [J]. JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2021, 59 (03): : 369 - 384
  • [36] Quantum Bayesian inference for parameter estimation using quantum generative model
    Hiroshi Ohno
    [J]. Quantum Information Processing, 22
  • [37] BAYESIAN INFERENCE OF SOLAR AND STELLAR MAGNETIC FIELDS IN THE WEAK-FIELD APPROXIMATION
    Asensio Ramos, A.
    [J]. ASTROPHYSICAL JOURNAL, 2011, 731 (01):
  • [38] Estimation of Maximum Tsunami Heights Using Probabilistic Modeling: Bayesian Inference and Bayesian Neural Networks
    Song, Min-Jong
    Kim, Byung-Ho
    Cho, Yong-Sik
    [J]. JOURNAL OF COASTAL RESEARCH, 2022, 38 (03) : 548 - 556
  • [39] Magnetic field and coronal streamers
    Trowbridge, J
    [J]. AMERICAN JOURNAL OF SCIENCE, 1906, 21 (123) : 189 - 195
  • [40] Coronal Magnetic Field Models
    Wiegelmann, Thomas
    Petrie, Gordon J. D.
    Riley, Pete
    [J]. SPACE SCIENCE REVIEWS, 2017, 210 (1-4) : 249 - 274