Global Coronal Magnetic Field Estimation Using Bayesian Inference

被引:0
|
作者
Baweja, Upasna [1 ,2 ]
Pant, Vaibhav [1 ]
Arregui, Inigo [3 ,4 ]
机构
[1] Aryabhatta Res Inst Observat Sci, Naini Tal 263001, India
[2] Mahatma Jyotiba Phule Rohilkhand Univ, Bareilly 243006, Uttar Pradesh, India
[3] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Tenerife, Spain
[4] Univ La Laguna, Dept Astrofis, E-38206 San Cristobal la Laguna, Tenerife, Spain
来源
ASTROPHYSICAL JOURNAL | 2024年 / 963卷 / 01期
基金
美国国家科学基金会;
关键词
LOOP OSCILLATIONS; SOLAR CORONA; TRANSVERSE OSCILLATIONS; TRANSITION-REGION; ATOMIC DATABASE; ALFVENIC WAVES; SEISMOLOGY; PULSATIONS; DENSITY; MISSION;
D O I
10.3847/1538-4357/ad1b57
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Estimating the magnetic field strength in the solar corona is crucial for understanding different physical processes happening over diverse spatiotemporal scales. However, the high temperatures and low density of the solar corona make this task challenging. The coronal magnetic field is too weak to produce a measurable splitting of the spectral lines using the Zeeman effect, and high temperature causes spectral lines to become weak and broad, making it difficult to detect the small Zeeman splitting. Coronal magneto-seismology, which combines the theoretical and observed properties of magnetohydrodynamic waves, can be used to infer the magnetic field strength of oscillating structures in the solar corona, which are otherwise difficult to estimate. In this work, we use the Doppler velocity and density data obtained from the Coronal Multichannel Polarimeter on 2016 October 14 to obtain the global map of the coronal magnetic field using Bayesian inference. Two priors are used for plasma density, viz Gaussian and uniform distributions. Bayesian inference provides us with the probability distribution for the magnetic field strength at each location from 1.05 to 1.35 R circle dot. A comparison between the magnetic field obtained using simple inversion and Bayesian inference is also drawn. We find that the values obtained using simple inversion do not always match the maximum posterior estimates obtained using Bayesian inference. We find that the inferred values follow a power-law function for the radial variation of the coronal magnetic field, with the power-law indices for simple and Bayesian inversion being similar.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Magnetic field inference in active region coronal loops using coronal rain clumps
    Kriginsky, M.
    Oliver, R.
    Antolin, P.
    Kuridze, D.
    Freij, N.
    [J]. ASTRONOMY & ASTROPHYSICS, 2021, 650
  • [2] Analysis of magnetic field fluctuation thermometry using Bayesian inference
    Wuebbeler, G.
    Schmaehling, F.
    Beyer, J.
    Engert, J.
    Elster, C.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2012, 23 (12)
  • [3] CORONAL MASS EJECTIONS AND GLOBAL CORONAL MAGNETIC FIELD RECONFIGURATION
    Liu, Ying
    Luhmann, Janet G.
    Lin, Robert P.
    Bale, Stuart D.
    Vourlidas, Angelos
    Petrie, Gordon J. D.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2009, 698 (01) : L51 - L55
  • [4] CORONAL SEISMOLOGY USING EIT WAVES: ESTIMATION OF THE CORONAL MAGNETIC FIELD STRENGTH IN THE QUIET SUN
    West, M. J.
    Zhukov, A. N.
    Dolla, L.
    Rodriguez, L.
    [J]. ASTROPHYSICAL JOURNAL, 2011, 730 (02):
  • [5] Estimation of calibration intervals using Bayesian inference
    Carvajal, Sergio A.
    Medina, Andres F.
    Bohorquez, Andres J.
    Sanchez, Ciro A.
    [J]. MEASUREMENT, 2022, 187
  • [6] Bayesian Estimation and Inference Using Stochastic Electronics
    Thakur, Chetan Singh
    Afshar, Saeed
    Wang, Runchun M.
    Hamilton, Tara J.
    Tapson, Jonathan
    van Schaik, Andre
    [J]. FRONTIERS IN NEUROSCIENCE, 2016, 10
  • [7] Field Map Reconstruction in Magnetic Resonance Imaging Using Bayesian Estimation
    Baselice, Fabio
    Ferraioli, Giampaolo
    Shabou, Aymen
    [J]. SENSORS, 2010, 10 (01) : 266 - 279
  • [8] OPTIMIZING GLOBAL CORONAL MAGNETIC FIELD MODELS USING IMAGE-BASED CONSTRAINTS
    Jones, Shaela I.
    Davila, Joseph M.
    Uritsky, Vadim
    [J]. ASTROPHYSICAL JOURNAL, 2016, 820 (02):
  • [9] Bayesian inference for parameters estimation using experimental data
    Pepi, Chiara
    Gioffre, Massimiliano
    Grigoriu, Mircea
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2020, 60
  • [10] BAYESIAN DENSITY-ESTIMATION AND INFERENCE USING MIXTURES
    ESCOBAR, MD
    WEST, M
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) : 577 - 588