Materials Strategies Tackling Interfacial Issues in Catalyst Layers of Proton Exchange Membrane Fuel Cells

被引:6
|
作者
Tang, Meihua [1 ]
Yan, Huangli [1 ]
Zhang, Xianming [1 ]
Zheng, Zhenying [1 ]
Chen, Shengli [1 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
PEM fuel cells; Pt/ionomer interfaces; catalyst poisoning; local oxygen transport; OXYGEN REDUCTION REACTION; PERFLUOROSULFONIC ACID IONOMER; CATHODE CATALYST; HIGH-PERFORMANCE; ELECTROLYTE; TRANSPORT; SURFACE; ELECTROCATALYSTS; RESISTANCE; INSIGHTS;
D O I
10.1002/adma.202306387
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The most critical challenge for the large-scale commercialization of proton exchange membrane fuel cells (PEMFCs), one of the primary hydrogen energy technologies, is to achieve decent output performance with low usage of platinum (Pt). Currently, the performance of PEMFCs is largely limited by two issues at the catalyst/ionomer interface, specifically, the poisoning of active sites of Pt by sulfonate groups and the extremely sluggish local oxygen transport toward Pt. In the past few years, emerging strategies are derived to tackle these interface problems through materials optimization and innovation. This perspective summarizes the latest advances in this regard, and in the meantime unveils the molecule-level mechanisms behind the materials modulation of interfacial structures. This paper starts with a brief introduction of processes and structures of catalyst/ionomer interfaces, which is followed by a detailed review of progresses in key materials toward interface optimization, including catalysts, ionomers, and additives, with particular emphasis on the role of materials structure in regulating the intermolecular interactions. Finally, the challenges for the application of the established materials and research directions to broaden the material library are highlighted. This perspective focuses on the latest progresses in material sciences for solving the problems related to the catalyst/ionomer interface in PEMFCs, with particular emphasis put on the effects of materials structures and intermolecular interactions. The content covers catalysts, ionomers, and additives. Based on molecule-level understanding, the challenges for the application of established materials and opportunities to broaden the material library are proposed.image
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Construction of Homogeneous Catalyst Layers at Proton Exchange Membrane Fuel Cell Cathodes
    Li, Xiaoyu
    Wang, Xiaojiang
    He, Jing
    Zheng, Tianlong
    Xu, Chao
    Zhou, Wenhui
    Wang, Junhu
    Liu, Jingang
    He, Qinggang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (04)
  • [32] Effects of gradient structures of cathode catalyst layers on performance and durability of proton exchange membrane fuel cells
    Dong, Enci
    Zhao, Hancheng
    Zhang, Ruiyuan
    Chen, Li
    Tao, Wen-Quan
    ELECTROCHIMICA ACTA, 2024, 477
  • [33] Phase-change-related degradation of catalyst layers in proton-exchange-membrane fuel cells
    Hwang, Gi Suk
    Kim, Hyoungchul
    Lujan, Roger
    Mukundan, Rangachary
    Spernjak, Dusan
    Borup, Rodney L.
    Kaviany, Massoud
    Kim, Moo Hwan
    Weber, Adam Z.
    ELECTROCHIMICA ACTA, 2013, 95 : 29 - 37
  • [34] Patterning Catalyst Layers with Microscale Features by Soft Lithography Techniques for Proton Exchange Membrane Fuel Cells
    Paul, Michael T. Y.
    Kim, Dongho
    Saha, Madhu S.
    Stumper, Juergen
    Gates, Byron D.
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (01): : 478 - 486
  • [35] Effect of dispersing solvents for ionomers on the performance and durability of catalyst layers in proton exchange membrane fuel cells
    Park, Jong-Hyeok
    Shin, Mun-Sik
    Park, Jin-Soo
    ELECTROCHIMICA ACTA, 2021, 391
  • [36] Understanding of hydrocarbon ionomers in catalyst layers for enhancing the performance and durability of proton exchange membrane fuel cells
    Pu, Xingtong
    Duan, Yuting
    Li, Jialin
    Ru, Chunyu
    Zhao, Chengji
    JOURNAL OF POWER SOURCES, 2021, 493
  • [37] Modeling and Control Strategies of Proton Exchange Membrane Fuel Cells
    Qi, Yuanxin
    Thern, Marcus
    Espinoza-Andaluz, Mayken
    Andersson, Martin
    RENEWABLE ENERGY INTEGRATION WITH MINI/MICROGRID, 2019, 159 : 54 - 59
  • [38] Effects of gradient structures of cathode catalyst layers on performance and durability of proton exchange membrane fuel cells
    Dong, Enci
    Zhao, Hancheng
    Zhang, Ruiyuan
    Chen, Li
    Tao, Wen-Quan
    Electrochimica Acta, 2024, 477
  • [39] Engineering Triple-Phase Boundary in Pt Catalyst Layers for Proton Exchange Membrane Fuel Cells
    Li, Yi
    Wu, Zirui
    Wang, Cheng
    Yu, Xiwen
    Gao, Wanguo
    Wang, Bing
    Wu, Congping
    Yao, Yingfang
    Yang, Juan
    Zou, Zhigang
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (19)
  • [40] The influence of graphitization on the thermal conductivity of catalyst layers and temperature gradients in proton exchange membrane fuel cells
    Bock, Robert
    Karoliussen, Havard
    Pollet, Bruno G.
    Secanell, Marc
    Seland, Frode
    Stanier, Dave
    Burheim, Odne S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (02) : 1335 - 1342