Modeling interfacial tension of the hydrogen-brine system using robust machine learning techniques: Implication for underground hydrogen storage (vol 47, pg 39595, 2022)

被引:0
|
作者
Ng, Cuthbert Shang Wui [1 ]
Djema, Hakim [2 ]
Amar, Menad Nait [2 ]
Ghahfarokhi, Ashkan Jahanbani [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Geosci & Petr, Trondheim, Norway
[2] Sonatrach, Dept Etud Thermodynam, Div Labs, Boumerdes, Algeria
关键词
D O I
10.1016/j.ijhydene.2023.05.335
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
引用
收藏
页数:1
相关论文
共 11 条
  • [1] Modeling interfacial tension of the hydrogen-brine system using robust machine learning techniques: Implication for underground hydrogen storage
    Ng, Cuthbert Shang Wui
    Djema, Hakim
    Amar, Menad Nait
    Ghahfarokhi, Ashkan Jahanbani
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (93) : 39595 - 39605
  • [2] New-generation machine learning models as prediction tools for modeling interfacial tension of hydrogen-brine system
    Gbadamosi, Afeez
    Adamu, Haruna
    Usman, Jamilu
    Usman, A. G.
    Jibril, Mahmud M.
    Salami, Babatunde Abiodun
    Gbadamosi, Saheed Lekan
    Oyedele, Lukumon O.
    Abba, S. I.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 1326 - 1337
  • [3] Modeling interfacial tension in hydrogen-water/brine systems for optimizing underground hydrogen storage
    Azadivash, Ahmad
    International Journal of Hydrogen Energy, 2025, 100 : 1385 - 1401
  • [4] White-box machine-learning models for accurate interfacial tension prediction in hydrogen-brine mixtures
    Lv, Qichao
    Xue, Jinglei
    Li, Xiaochen
    Rezaei, Farzaneh
    Larestani, Aydin
    Norouzi-Apourvari, Saeid
    Abdollahi, Hadi
    Hemmati-Sarapardeh, Abdolhossein
    CLEAN ENERGY, 2024, 8 (05): : 252 - 264
  • [5] Interfacial Tension-Temperature-Pressure-Salinity Relationship for the Hydrogen-Brine System under Reservoir Conditions: Integration of Molecular Dynamics and Machine Learning
    Omrani, Sina
    Ghasemi, Mehdi
    Singh, Mrityunjay
    Mahmoodpour, Saeed
    Zhou, Tianhang
    Babaei, Masoud
    Niasar, Vahid
    LANGMUIR, 2023, 39 (36) : 12680 - 12691
  • [6] Rigorous hybrid machine learning approaches for interfacial tension modeling in brine-hydrogen/cushion gas systems: Implication for hydrogen geo-storage in the presence of cushion gas
    Behnamnia, Mohammad
    Mozafari, Negin
    Monfared, Abolfazl Dehghan
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [7] Underground hydrogen storage: A recovery prediction using pore network modeling and machine learning
    Zhao, Qingqi
    Wang, Hongsheng
    Chen, Cheng
    FUEL, 2024, 357
  • [8] Wettability of shale-brine-H2 system and H2-brine interfacial tension for assessment of the sealing capacities of shale formations during underground hydrogen storage
    Al-Mukainah, Hani
    Al-Yaseri, Ahmed
    Yekeen, Nurudeen
    Al Hamad, Jafar
    Mahmoud, Mohamed
    ENERGY REPORTS, 2022, 8 : 8830 - 8843
  • [9] Wettability of shale-brine-H-2 system and H-2-brine interfacial tension for assessment of the sealing capacities of shale formations during underground hydrogen storage
    Al-Mukainah, Hani
    Al-Yaseri, Ahmed
    Yekeen, Nurudeen
    Al Hamad, Jafar
    Mahmoud, Mohamed
    ENERGY REPORTS, 2022, 8 : 8830 - 8843
  • [10] Using X-ray computed tomography and pore-scale numerical modeling to study the role of heterogeneous rock surface wettability on hydrogen-brine two-phase flow in underground hydrogen storage
    Zhao Q.
    Guo R.
    Jha N.K.
    Sarmadivaleh M.
    Lebedev M.
    Al-Yaseri A.
    McClure J.
    Chen C.
    Fuel, 2024, 366