Virtual screening of organic quinones as cathode materials for sodium-ion batteries

被引:6
|
作者
Zhou, Xuan [1 ,2 ]
Janssen, Rene A. J. [1 ,3 ]
Er, Sueleyman [1 ]
机构
[1] DIFFER Dutch Inst Fundamental Energy Res, Zaale 20, NL-5612 AJ Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Inst Complex Mol Syst, Mol Mat & Nanosyst, NL-5600 MB Eindhoven, Netherlands
来源
ENERGY ADVANCES | 2023年 / 2卷 / 06期
关键词
ENERGY-STORAGE; ACTIVE MATERIALS; MOLECULES; ANTHRAQUINONES; ELECTROLYTE; STABILITY; NA;
D O I
10.1039/d2ya00282e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-throughput virtual screening (HTVS) has been increasingly applied as an effective approach to find candidate materials for energy applications. We performed a HTVS study, which is powered by: (i) automated virtual screening library generation, (ii) automated search on a readily purchasable chemical space of quinone-based compounds, and (iii) computed physicochemical descriptors for the prediction of key battery-related features of compounds, including the reduction potential, gravimetric energy density, gravimetric charge capacity, and molecular stability. From the initial virtual library of approximately 450k molecules, a total of 326 compounds have been identified as commercially available. Among them, 289 of the molecules are predicted to be stable for the sodiation reactions that take place at the sodium-ion battery cathodes. To study the behaviour of molecules over time at room temperature, we performed molecular dynamics simulations on a group of sodiated product molecules, which was narrowed down to 21 quinones after scrutinizing the key battery performance indicators. As a result, 17 compounds are suggested for validation as candidate cathode materials in sodium-ion batteries. The discovery of quinone-based compounds that are commercially accessible and can function as cathode materials in sodium ion batteries.
引用
收藏
页码:820 / 828
页数:9
相关论文
共 50 条
  • [11] Recent Advances in Phosphate Cathode Materials for Sodium-ion Batteries
    Cao, Xinxin
    Zhou, Jiang
    Pan, Anqiang
    Liang, Shuquan
    ACTA PHYSICO-CHIMICA SINICA, 2020, 36 (05)
  • [12] A review on pyrophosphate framework cathode materials for sodium-ion batteries
    Niu, Yubin
    Zhang, Yan
    Xu, Maowen
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (25) : 15006 - 15025
  • [13] An Overview of Mixed Polyanionic Cathode Materials for Sodium-Ion Batteries
    Senthilkumar, Baskar
    Murugesan, Chinnasamy
    Sharma, Lalit
    Lochab, Shubham
    Barpanda, Prabeer
    SMALL METHODS, 2019, 3 (04)
  • [14] The Role of Fluorine in Polyanionic Cathode Materials for Sodium-Ion Batteries
    Hu, Jinqiao
    Zhao, Wenxi
    Wang, Yuqiu
    Jiang, Shikang
    Yu, Binkai
    Dou, Shi-Xue
    Liu, Hua-Kun
    Chen, Shuangqiang
    Zhang, Kai
    Zhou, Limin
    Chen, Mingzhe
    SMALL METHODS, 2025,
  • [15] Polyanion-type cathode materials for sodium-ion batteries
    Jin, Ting
    Li, Huangxu
    Zhu, Kunjie
    Wang, Peng-Fei
    Liu, Pei
    Jiao, Lifang
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (08) : 2342 - 2377
  • [16] Perspective: Design of cathode materials for sustainable sodium-ion batteries
    Baharak Sayahpour
    Hayley Hirsh
    Saurabh Parab
    Long Hoang Bao Nguyen
    Minghao Zhang
    Ying Shirley Meng
    MRS Energy & Sustainability, 2022, 9 : 183 - 197
  • [17] Perspective: Design of cathode materials for sustainable sodium-ion batteries
    Sayahpour, Baharak
    Hirsh, Hayley
    Parab, Saurabh
    Nguyen, Long Hoang Bao
    Zhang, Minghao
    Meng, Ying Shirley
    MRS ENERGY & SUSTAINABILITY, 2022, 9 (02) : 183 - 197
  • [18] Mainstream Optimization Strategies for Cathode Materials of Sodium-Ion Batteries
    Xu, Huan
    Yan, Qi
    Yao, Wenjiao
    Lee, Chun-Sing
    Tang, Yongbing
    SMALL STRUCTURES, 2022, 3 (04):
  • [19] Prospective Sustainability Screening of Sodium-Ion Battery Cathode Materials
    Baumann, Manuel
    Haeringer, Marcel
    Schmidt, Marius
    Schneider, Luca
    Peters, Jens F.
    Bauer, Werner
    Binder, Joachim R.
    Weil, Marcel
    ADVANCED ENERGY MATERIALS, 2022, 12 (46)
  • [20] Organic Cathode Materials for Sodium-Ion Batteries: From Fundamental Research to Potential Commercial Application
    Zhang, Hang
    Gao, Yun
    Liu, Xiao-Hao
    Yang, Zhuo
    He, Xiang-Xi
    Li, Li
    Qiao, Yun
    Chen, Wei-Hua
    Zeng, Rong-Hua
    Wang, Yong
    Chou, Shu-Lei
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (04)