Optimized hybrid dielectrophoretic microchip for separation of bioparticles

被引:8
|
作者
Mahani, Moheb Amir [1 ]
Karimvand, Ahmad Naseri [2 ]
Naserifar, Naser [1 ]
机构
[1] KN Toosi Univ Technol, Dept Mech Engn, Pardis St,Vanak Sq, POB 19395199, Tehran, Iran
[2] Politecn Torino, Dept Mech Engn, Turin, Italy
关键词
cell separation; dielectrophoresis; hybrid separation; inertial; microfluidics; DETERMINISTIC LATERAL DISPLACEMENT; PARTICLE SEPARATION; HYDRODYNAMIC FILTRATION; FLOW FRACTIONATION; AIR-POLLUTION; TUMOR-CELLS; SIZE; MICROFLUIDICS; ASSOCIATION; DESIGN;
D O I
10.1002/jssc.202300257
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Point-of-care diagnostics requires a smart separation of particles and/or cells. In this work, the multiorifice fluid fractionation as a passive method and dielectrophoresis-based actuator as an active tool are combined to offer a new device for size-based particle separation. The main objective of the combination of these two well-established techniques is to improve the performance of the multiorifice fluid fractionation by taking advantage of dielectrophoresis-based actuator for separating particles. Initially, by using numerical simulations, the effect of using dielectrophoresis-based actuator in multiorifice fluid fractionation on the separation of particles was investigated, and the size of the device was optimized by 25% compared to a device without dielectrophoresis-based actuator. Also, adding dielectrophoresis-based actuator to multiorifice fluid fractionation can extend the range of flow rates needed for separation. In the absence of dielectrophoresis-based actuator, the separation took place only when the flow rate is 100 & mu;L/min, in the presence of dielectrophoresis-based actuator (20 Vp-p), the separation happened in flow rates ranging from 70 to 120 & mu;L/min.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] SEPARATION AND CHARACTERIZATION OF BIOPOLYMERS AND BIOPARTICLES BY FIELD-FLOW FRACTIONATION
    GIDDINGS, JC
    LI, P
    YONG, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 205 : 85 - ANYL
  • [42] Strategy for selection of methods for separation of bioparticles from particle mixtures
    van Hee, P.
    Hoeben, M. A.
    van der Lans, R. G. J. M.
    van der Wielen, L. A. M.
    BIOTECHNOLOGY AND BIOENGINEERING, 2006, 94 (04) : 689 - 709
  • [43] Size separation of biomolecules and bioparticles using micro/nanofabricated structures
    Xuan, Jie
    Lee, Milton L.
    ANALYTICAL METHODS, 2014, 6 (01) : 27 - 37
  • [44] Separation of bioparticles using the travelling wave dielectrophoresis with multiple frequencies
    Chang, DE
    Loire, S
    Mezic, O
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 6448 - 6453
  • [45] Dielectrophoretic separation of cancer cells from blood
    Gascoyne, PRC
    Wang, XB
    Huang, Y
    Becker, FF
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1997, 33 (03) : 670 - 678
  • [46] Parallelized continuous flow dielectrophoretic separation of DNA
    Derksen, Jakob
    Viefhues, Martina
    ELECTROPHORESIS, 2023, 44 (11-12) : 968 - 977
  • [47] Fifty years of dielectrophoretic cell separation technology
    Hughes, Michael P.
    BIOMICROFLUIDICS, 2016, 10 (03):
  • [48] OPTIMIZATION OF A METHOD FOR DIELECTROPHORETIC CELL-SEPARATION
    KRAUSE, G
    GLASER, R
    STUDIA BIOPHYSICA, 1981, 82 (03): : 185 - 197
  • [49] Dielectrophoretic separation of micron and submicron particles: A review
    Dash, Swagatika
    Mohanty, Swati
    ELECTROPHORESIS, 2014, 35 (18) : 2656 - 2672
  • [50] Continuous Electrodeless Dielectrophoretic Separation in a Circular Channel
    Zhang, L.
    Tatar, F.
    Turmezei, P.
    Bastemeijer, J.
    Mollinger, J. R.
    Piciu, O.
    Bossche, A.
    INTERNATIONAL MEMS CONFERENCE 2006, 2006, 34 : 527 - 532