Data-driven machine learning prediction of glass transition temperature and the glass-forming ability of metallic glasses

被引:0
|
作者
Zhang, Jingzi [1 ,2 ]
Zhao, Mengkun [1 ,2 ]
Zhong, Chengquan [1 ,2 ]
Liu, Jiakai [1 ,2 ]
Hu, Kailong [1 ,2 ,3 ]
Lin, Xi [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, Blockchain Dev & Res Inst, Shenzhen 518055, Peoples R China
[3] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China
关键词
CRITERION; SIZE;
D O I
10.1039/d3nr04380k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The limited glass-forming ability (GFA) poses a significant challenge for the practical applications of metallic glasses (MGs). The development of high-GFA MGs typically involves trial-and-error processes to screen materials with a large critical diameter (Dmax), which serves as a criterion for determining the GFA. The formation and stability of MGs are influenced by the glass transition temperature (Tg). Over the past decade, the emergence of machine learning (ML) has shown great promise in the exploration of high-GFA materials. However, the contribution of material features to Tg and Dmax predictions, as well as their correlations, remains ambiguous, posing a challenge to achieving high prediction accuracy. Herein, we present a comprehensive dataset consisting of 1764 datapoints for Tg and 1296 datapoints for Dmax. The governing rules for GFA have been established through feature significance analysis. The light gradient boosting (LGB) model exhibits remarkable accuracy in predicting Tg, utilizing sixteen features, achieving a coefficient of determination (R2) score of 0.984 and a root mean square error (RMSE) of 20.196 K. An integrated ML model, based on the weighted voting of three basic models, is developed to enhance the accuracy of Dmax prediction, achieving an R2 score of 0.767 and an RMSE of 2.331 mm. Additionally, a GFA rule is proposed to explore materials with large Dmax values, defined by satisfying the criteria of a thermal conductivity difference ranging from 0.60 to 1.32 and an entropy density exceeding 1.05. Our work provides valuable insights into Tg and Dmax predictions and facilitates the exploration of potential high-GFA MGs through the implementation of a well-established ML model and GFA rules. The data-driven machine learning approach has greatly improved the predictive accuracy of Tg and Dmax values. The governing rules for GFA have been successfully established through feature significance analysis.
引用
收藏
页码:18511 / 18522
页数:12
相关论文
共 50 条
  • [1] Machine learning prediction of glass-forming ability in bulk metallic glasses
    Xiong, Jie
    Shi, San-Qiang
    Zhang, Tong-Yi
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 192
  • [2] Machine Learning Aided Prediction of Glass-Forming Ability of Metallic Glass
    Liu, Chengcheng
    Wang, Xuandong
    Cai, Weidong
    He, Yazhou
    Su, Hang
    PROCESSES, 2023, 11 (09)
  • [3] Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses
    Jie Xiong
    Tong-Yi Zhang
    San-Qiang Shi
    MRS Communications, 2019, 9 : 576 - 585
  • [4] Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses
    Xiong, Jie
    Zhang, Tong-Yi
    Shi, San-Qiang
    MRS COMMUNICATIONS, 2019, 9 (02) : 576 - 585
  • [5] Machine learning versus human learning in predicting glass-forming ability of metallic glasses
    Liu, Guannan
    Sohn, Sungwoo
    Kube, Sebastian A.
    Raj, Arindam
    Mertz, Andrew
    Nawano, Aya
    Gilbert, Anna
    Shattuck, Mark D.
    O'Hern, Corey S.
    Schroers, Jan
    ACTA MATERIALIA, 2023, 243
  • [6] Rational design and glass-forming ability prediction of bulk metallic glasses via interpretable machine learning
    Tao Long
    Zhilin Long
    Zheng Peng
    Journal of Materials Science, 2023, 58 : 8833 - 8844
  • [7] Rational design and glass-forming ability prediction of bulk metallic glasses via interpretable machine learning
    Long, Tao
    Long, Zhilin
    Peng, Zheng
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (21) : 8833 - 8844
  • [8] A two-step fused machine learning approach for the prediction of glass-forming ability of metallic glasses
    Zhang, Y. X.
    Xing, G. C.
    Sha, Z. D.
    Poh, L. H.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 875
  • [9] Prediction of Glass Forming Ability of Bulk Metallic Glasses Using Machine Learning
    Reddy, G. Jaideep
    Kandavalli, Manjunadh
    Saboo, Tanay
    Rao, A. K. Prasada
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2021, 10 (04) : 610 - 626
  • [10] Prediction of Glass Forming Ability of Bulk Metallic Glasses Using Machine Learning
    G. Jaideep Reddy
    Manjunadh Kandavalli
    Tanay Saboo
    A. K. Prasada Rao
    Integrating Materials and Manufacturing Innovation, 2021, 10 : 610 - 626