Blowing-ups of beam shape coefficients of Gaussian beams using finite series in generalized Lorenz-Mie theory

被引:6
|
作者
Votto, Luiz Felipe [1 ]
Gouesbet, Gerard [2 ,3 ]
Ambrosio, Leonardo Andre [1 ]
机构
[1] Univ Sao Paulo, Escola Engn Sao Carlos, 400 Ave Trabalhador Sao carlense, BR-13566590 Sao Carlos, SP, Brazil
[2] Univ Saint Etienne Rouvray, CNRS, CORIA, UMR 6614, Site Madrillet,Ave Univ,BP 12, F-76801 St Etienne Du Rouvray, France
[3] INSA Rouen, Site Madrillet,Ave Univ,BP12, F-76801 St Etienne Du Rouvray, France
基金
巴西圣保罗研究基金会; 瑞典研究理事会;
关键词
Light scattering; Lasers; APPROXIMATION;
D O I
10.1016/j.jqsrt.2023.108787
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Compact closed-form expressions of the beam shape coefficients (BSCs) of Gaussian beams are obtained in the generalized Lorenz-Mie theory through the finite series (FS) method. As a result, such expressions have made it possible to more deeply understand the behaviour of the BSCs and, therefore, the scattering of Gaussian beams beyond the paraxial approximation. The blowing up, in particular, of FS BSCs which has been observed for several paraxial beams is now mathematically justified as a phenomenon that is independent of numerical precision. Furthermore, numerical results demonstrate how such blow ups are related to the ratio between the beam waist radius and its wavelength.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Calculation of generalized Lorenz-Mie theory based on the localized beam models
    Jia, Xiaowei
    Shen, Jianqi
    Yu, Haitao
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 195 : 44 - 54
  • [22] Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination
    Han, YP
    Gréhan, G
    Gouesbet, G
    [J]. APPLIED OPTICS, 2003, 42 (33) : 6621 - 6629
  • [23] Transformations of spherical beam shape coefficients in generalized Lorenz-Mie theories through rotations of coordinate systems II. Axisymmetric beams
    Wang, J. J.
    Gouesbet, G.
    Han, Y. P.
    [J]. OPTICS COMMUNICATIONS, 2010, 283 (17) : 3226 - 3234
  • [24] Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-Mie theory: formulation and numerical results
    Ren, KF
    Grehan, G
    Gouesbet, G
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (11): : 3014 - 3025
  • [25] Scattering of Lommel beams by homogenous spherical particle in generalized Lorenz-Mie theory
    Chafiq, A.
    Belafhal, A.
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (02)
  • [26] Bessel-Gauss beams in the generalized Lorenz-Mie theory using three remodeling techniques
    Valdivia, Nereida L.
    Votto, Luiz F. M.
    Gouesbet, Gerard
    Wang, Jiajie
    Ambrosio, Leonardo A.
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 256
  • [27] Scattering of vector Lommel beam by spherical particle in generalized Lorenz-Mie theory
    Ahmidi, A.
    Chafiq, A.
    Belafhal, A.
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (07)
  • [28] On the accuracy of approximate descriptions of discrete superpositions of Bessel beams in the generalized Lorenz-Mie theory
    Ambrosio, Leonardo Andre
    da Silva Santos, Carlos Henrique
    Lages Rodrigues, Ivan Eduardo
    [J]. 2017 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE (IMOC), 2017,
  • [29] Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres
    Gouesbet, G
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1999, 16 (07): : 1641 - 1650
  • [30] LOCALIZED INTERPRETATION TO COMPUTE ALL THE COEFFICIENTS GN(M) IN THE GENERALIZED LORENZ-MIE THEORY
    GOUESBET, G
    GREHAN, G
    MAHEU, B
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1990, 7 (06): : 998 - 1007