Revealing the effect of Nb or V doping on anode performance in Na2Ti3O7 for sodium-ion batteries: a first-principles study

被引:1
|
作者
Hwang, Suk-Gyong [1 ]
Kim, Chung-Hyok [1 ]
Choe, Song-Hyok [1 ]
Ri, Kum-Chol [1 ]
Yu, Chol-Jun [1 ]
机构
[1] Kim Il Sung Univ, Fac Mat Sci, Computat Mat Design, POB 76, Pyongyang, North Korea
关键词
AB-INITIO; POTENTIAL ANODE; STORAGE; NA2TI6O13; TIO2; INTERCALATION; CONDUCTIVITY; ARCHITECTURE; CHALLENGES; NANOTUBES;
D O I
10.1039/d3ra01755a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium titanate Na2Ti3O7 (NTO) has superior electrochemical properties as an anode material in sodium-ion batteries (SIBs), and Nb or V doping is suggested to enhance the electrode performance. In this work, we carry out systematic first-principles calculations of the structural, electronic and electrochemical properties of NTO and Na2Ti2.75M0.25O7 (M = Nb, V), using supercells to reveal the effect of Nb or V NTO-doping on its anode performance. It is found that Nb doping gives rise to the expansion of cell volume but V doping induces the shrinkage of cell volume due to the larger and smaller ionic radius of the Nb and V ions, respectively, compared to that of the Ti ion. We perform structural optimization of the intermediate phases of Na2+xM3O7 with increasing Na content x from 0 to 2, revealing that the overall relative volume expansion rate is slightly increased by Nb and V doping but remains lower than 3%. Our calculations demonstrate that the electrode potential of NTO is slightly raised and the specific capacity is reduced, but the electronic and ionic conductivities are improved by Nb or V doping. With the revealed understanding and mechanisms, our work will contribute to the search for advanced electrode materials for SIBs.
引用
收藏
页码:16749 / 16757
页数:9
相关论文
共 50 条
  • [21] Self-assembled twine-like Na2Ti3O7 nanostructure as advanced anode for sodium-ion batteries
    Yan, Xiao
    Sun, Deye
    Jiang, Jicheng
    Yan, Wenchao
    Jin, Yongcheng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 697 : 208 - 214
  • [22] Insights into Na ion adsorption and diffusion in biphenylene as an anode material for sodium-ion batteries: A first-principles study
    Xu, Yongyi
    Fu, Yingying
    Gong, Xiaxia
    Xu, Jing
    Liu, Wei
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [23] Deeper Insights into the Morphology Effect of Na2Ti3O7 Nanoarrays on Sodium-Ion Storage
    Chen, Xiangxiong
    Li, Jun
    Gao, Zhaohe
    Qian, Dong
    Waterhouse, Geoffrey I. N.
    Liu, Jinlong
    SMALL, 2024, 20 (38)
  • [24] Solvothermal synthesis of Na2Ti3O7 nanowires embedded in 3D graphene networks as an anode for high-performance sodium-ion batteries
    Zhou, Zhiming
    Xiao, Hongmei
    Zhang, Fan
    Zhang, Xiaolong
    Tang, Yongbing
    ELECTROCHIMICA ACTA, 2016, 211 : 430 - 436
  • [25] Mesoporous Na2Ti3O7 microspheres with rigid framework as anode materials for high-performance sodium ion batteries
    Chen, Si
    Gao, Lin
    Zhang, Lulu
    Yang, Xuelin
    IONICS, 2019, 25 (05) : 2211 - 2219
  • [26] Mesoporous Na2Ti3O7 microspheres with rigid framework as anode materials for high-performance sodium ion batteries
    Si Chen
    Lin Gao
    Lulu Zhang
    Xuelin Yang
    Ionics, 2019, 25 : 2211 - 2219
  • [27] Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room-Temperature Sodium-Ion Batteries
    Pan, Huilin
    Lu, Xia
    Yu, Xiqian
    Hu, Yong-Sheng
    Li, Hong
    Yang, Xiao-Qing
    Chen, Liquan
    ADVANCED ENERGY MATERIALS, 2013, 3 (09) : 1186 - 1194
  • [28] An ionic liquid synthesis route for mixed-phase sodium titanate (Na2Ti3O7 and Na2Ti6O13) rods as an anode for sodium-ion batteries
    Kumari, Pooja
    Li, Yining
    Boston, Rebecca
    NANOSCALE, 2023, 15 (28) : 12087 - 12094
  • [29] Synthesis and electrochemical performance of in-situ and ex-situ carbon- coated Na2Ti3O7, as a promising anode for sodium-ion batteries
    Mukherjee, Anwesa
    Das, Debasish
    Banerjee, Susanta
    Majumder, Subhashish Basu
    ELECTROCHEMICAL SCIENCE ADVANCES, 2023, 3 (05):
  • [30] Improving the sodiation performance of Na2Ti3O7 through Nb-doping
    Chen, Jizhang
    Zhou, Xiaoyan
    Mei, Changtong
    Xu, Junling
    Wong, Ching-Ping
    ELECTROCHIMICA ACTA, 2017, 224 : 446 - 451