A strong, biodegradable, and recyclable all-lignocellulose fabricated triboelectric nanogenerator for self-powered disposable medical monitoring

被引:28
|
作者
Shi, Xue [1 ,2 ]
Chen, Pengfei [1 ,2 ]
Han, Kai [1 ]
Li, Chengyu [1 ,2 ]
Zhang, Renyun [4 ]
Luo, Jianjun [1 ,2 ]
Wang, Zhong Lin [1 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing Key Lab Micronano Energy & Sensor, Beijing 101400, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[3] Georgia Inst Technol, Atlanta, GA 30332 USA
[4] Mid Sweden Univ, Dept Engn Math & Sci Educ, Holmgatan 10, SE-85170 Sundsvall, Sweden
基金
中国国家自然科学基金;
关键词
56;
D O I
10.1039/d3ta01763j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The growing demand for fast, reliable, and accessible information in the vastly connected world makes disposable sensors increasingly important. However, reducing their costs, environmental impact, and usability remains challenging. Here, we report a low-cost, biodegradable, and recyclable all-lignocellulosic triboelectric nanogenerator (AL-TENG) for self-powered disposable medical monitoring. Based on a facile in situ lignin regeneration & chemical crosslinking modification strategy, a high-performance lignocellulosic bioplastic is synthesized from resource-abundant and renewable biomass for fabricating the AL-TENG. The whole device has a low environmental impact as it can be easily recycled and biodegraded at its end-of-life. Furthermore, a self-powered smart ward system and a self-powered contactless medical monitoring system are developed to improve the convenience for patients and reduce the risk of mutual infection. This work can expand the application of self-powered systems to disposable medical sensing, which may greatly promote the development of intelligent wards and disposable electronics.
引用
收藏
页码:11730 / 11739
页数:10
相关论文
共 50 条
  • [21] Research on Self-Powered Rainfall Sensor Suitable for Landslide Monitoring Based on Triboelectric Nanogenerator
    Wu, Chuan
    Zou, Hao
    IEEE SENSORS JOURNAL, 2024, 24 (03) : 2620 - 2627
  • [22] Large Scale Triboelectric Nanogenerator and Self-Powered Flexible Sensor for Human Sleep Monitoring
    Ding, Xiaoheng
    Cao, Hailin
    Zhang, Xinghong
    Li, Mingyu
    Liu, Yuntian
    SENSORS, 2018, 18 (06)
  • [23] Mechanically Asymmetrical Triboelectric Nanogenerator for Self-Powered Monitoring of In Vivo Microscale Weak Movement
    Cheng, Bolang
    Ma, Jianxiu
    Li, Gaoda
    Bai, Suo
    Xu, Qi
    Cui, Xin
    Cheng, Li
    Qin, Yong
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2020, 10 (27)
  • [24] A Capsule-Shaped Triboelectric Nanogenerator for Self-Powered Health Monitoring of Traffic Facilities
    Xu, Jiahui
    Wei, Xuelian
    Li, Ruonan
    Kong, Sasa
    Wu, Zhiyi
    Wang, Zhong Lin
    ACS MATERIALS LETTERS, 2022, 4 (09): : 1630 - 1637
  • [25] A self-powered bridge health monitoring system driven by elastic origami triboelectric nanogenerator
    Xia, Kequan
    Liu, Jianzhang
    Li, Wentao
    Jiao, Pengcheng
    He, Zhiguo
    Wei, Yan
    Qu, Fengzhong
    Xu, Zhiwei
    Wang, Lizhong
    Ren, Xuchu
    Wu, Boming
    Hong, Yi
    NANO ENERGY, 2023, 105
  • [26] Self-powered system based on triboelectric nanogenerator in agricultural groundwater pollution monitoring and control
    Qu, Wanlong
    Zhong, Cheng
    Luan, Pengyu
    Shi, Wenqing
    Geng, Lin
    Shi, Gaofei
    Chen, Ri
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [27] Nanopillar Arrayed Triboelectric Nanogenerator as a Self-Powered Sensitive Sensor for a Sleep Monitoring System
    Song, Weixing
    Gan, Baoheng
    Jiang, Tao
    Zhang, Yue
    Yu, Aifang
    Yuan, Hongtao
    Chen, Ning
    Sun, Chunwen
    Wang, Zhong Lin
    ACS NANO, 2016, 10 (08) : 8097 - 8103
  • [28] Self-Powered Acceleration Sensor Based on Liquid Metal Triboelectric Nanogenerator for Vibration Monitoring
    Zhang, Binbin
    Zhang, Lei
    Deng, Weili
    Jin, Long
    Chun, Fengjun
    Pan, Hong
    Gu, Bingni
    Zhang, Haitao
    Lv, Zekai
    Yang, Weiqing
    Wang, Zhong Lin
    ACS NANO, 2017, 11 (07) : 7440 - 7446
  • [29] A Stretchable, Flexible Triboelectric Nanogenerator for Self-Powered Real-Time Motion Monitoring
    Lu, Cunxin
    Chen, Jian
    Jiang, Tao
    Gu, Guangqin
    Tang, Wei
    Wang, Zhong Lin
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (06):
  • [30] A STRETCHABLE TRIBOELECTRIC NANOGENERATOR BASED ON MOLYBDENUM DISULFIDE FOR WEARABLE SELF-POWERED BIOMOTION MONITORING
    Kim, HongSeok
    Rana, S. M. Sohel
    Faruk, Omar
    Islam, M. Robiul
    Park, Jae Y.
    2023 22ND INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS, POWERMEMS 2023, 2023, : 15 - 18