Approximation Properties of the Blending-Type Bernstein-Durrmeyer Operators

被引:2
|
作者
Liu, Yu-Jie [1 ]
Cheng, Wen-Tao [1 ]
Zhang, Wen-Hui [2 ,3 ]
Ye, Pei-Xin [2 ,3 ]
机构
[1] Anqing Normal Univ, Sch Math & Phys, Anqing 246133, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
modified Bernstein-Durrmeyer operators; Voronovskaya-type theorem; local approximation; global approximation; K-functional; modulus of smoothness; bounded variation;
D O I
10.3390/axioms12010005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct the blending-type modified Bernstein-Durrmeyer operators and investigate their approximation properties. First, we derive the Voronovskaya-type asymptotic theorem for this type of operator. Then, the local and global approximation theorems are obtained by using the classical modulus of continuity and K-functional. Finally, we derive the rate of convergence for functions with a derivative of bounded variation. The results show that the new operators have good approximation properties.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] APPROXIMATION PROPERTIES FOR MODIFIED (p, q)-BERNSTEIN-DURRMEYER OPERATORS
    Mursaleen, Mohammad
    Alabied, Ahmed A. H.
    [J]. MATHEMATICA BOHEMICA, 2018, 143 (02): : 173 - 188
  • [23] Local approximation by a variant of Bernstein-Durrmeyer operators
    Abel, Ulrich
    Gupta, Vijay
    Mohapatra, Ram N.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (11) : 3372 - 3381
  • [24] BERNSTEIN-DURRMEYER OPERATORS
    ADELL, JA
    DELACAL, J
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (3-6) : 1 - 14
  • [25] Modified Bernstein-Durrmeyer Type Operators
    Kajla, Arun
    Miclaus, Dan
    [J]. MATHEMATICS, 2022, 10 (11)
  • [26] Approximation of Functions by Generalized Parametric Blending-Type Bernstein Operators
    Hüseyin Aktuğlu
    S. Yashar Zaheriani
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 : 1495 - 1504
  • [27] Asymptotic Properties of Bernstein-Durrmeyer Operators
    Xu, Xiao-Wei
    Zeng, Xiao-Ming
    [J]. RESULTS IN MATHEMATICS, 2016, 69 (3-4) : 345 - 357
  • [28] Approximation of Functions by Generalized Parametric Blending-Type Bernstein Operators
    Aktuglu, Huseyin
    Zaheriani, S. Yashar
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (05): : 1495 - 1504
  • [29] Approximation by Certain Operators Linking the α-Bernstein and the Genuine α-Bernstein-Durrmeyer Operators
    Acu, Ana Maria
    Radu, Voichita Adriana
    [J]. MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018, 2020, 306 : 77 - 88
  • [30] Blending Type Approximation by GBS Operators of Generalized Bernstein–Durrmeyer Type
    Arun Kajla
    Dan Miclăuş
    [J]. Results in Mathematics, 2018, 73