Lifelong ensemble learning based on multiple representations for few-shot object recognition

被引:2
|
作者
Kasaei, Hamidreza [1 ]
Xiong, Songsong [1 ]
机构
[1] Univ Groningen, Bernoulli Inst, Fac Sci & Engn, Dept Artificial Intelligence, Groningen, Netherlands
关键词
Few-shot learning; Lifelong learning; Continual learning; Ensemble learning; 3D object recognition; Multiple representations; Service robots; PERCEPTION;
D O I
10.1016/j.robot.2023.104615
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Service robots are increasingly integrating into our daily lives to help us with various tasks. In such environments, robots frequently face new objects while working in the environment and need to learn them in an open-ended fashion. Furthermore, such robots must be able to recognize a wide range of object categories. In this paper, we present a lifelong ensemble learning approach based on multiple representations to address the few -shot object recognition problem. In particular, we form ensemble methods based on deep representations and handcrafted 3D shape descriptors. To facilitate lifelong learning, each approach is equipped with a memory unit for storing and retrieving object information instantly. The proposed model is suitable for open-ended learning scenarios where the number of 3D object categories is not fixed and can grow over time. We have performed extensive sets of experiments to assess the performance of the proposed approach in offline, and open-ended scenarios. For evaluation purposes, in addition to real object datasets, we generate a large synthetic household objects dataset consisting of 27000 views of 90 objects. Experimental results demonstrate the effectiveness of the proposed method on online few -shot 3D object recognition tasks, as well as its superior performance over the state-of-the-art open-ended learning approaches. Furthermore, our results show that while ensemble learning is modestly beneficial in offline settings, it is significantly beneficial in lifelong fewshot learning situations. Additionally, we demonstrated the effectiveness of our approach in both simulated and real -robot settings, where the robot rapidly learned new categories from limited examples. A video of our experiments is available online at: https://youtu.be/nxVrQCuYGdI.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Multimodal Few-Shot Learning for Gait Recognition
    Moon, Jucheol
    Nhat Anh Le
    Minaya, Nelson Hebert
    Choi, Sang-Il
    APPLIED SCIENCES-BASEL, 2020, 10 (21): : 1 - 15
  • [22] Robotic Object Perception Based on Multispectral Few-Shot Coupled Learning
    Xiong, Pengwen
    Tong, Xiaobao
    Liu, Peter X.
    Song, Aiguo
    Li, Zhijun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (10): : 6119 - 6131
  • [23] Meta-Learning-Based Incremental Few-Shot Object Detection
    Cheng, Meng
    Wang, Hanli
    Long, Yu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 2158 - 2169
  • [24] Multi-Object Detection and Tracking Based on Few-Shot Learning
    Luo, Da-Peng
    Du, Guo-Qing
    Zeng, Zhi-Peng
    Wei, Long-Sheng
    Gao, Chang-Xin
    Cheng, Ying
    Xiao, Fei
    Luo, Chen
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2021, 49 (01): : 183 - 191
  • [25] Meta-Learning-Based Incremental Few-Shot Object Detection
    Department of Computer Science and Technology, Tongji University, Shanghai
    201804, China
    不详
    200092, China
    不详
    201210, China
    IEEE Trans Circuits Syst Video Technol, 2022, 4 (2158-2169):
  • [26] Multiple knowledge embedding for few-shot object detection
    Gong, Xiaolin
    Cai, Youpeng
    Wang, Jian
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (05) : 2231 - 2240
  • [27] Multiple knowledge embedding for few-shot object detection
    Xiaolin Gong
    Youpeng Cai
    Jian Wang
    Signal, Image and Video Processing, 2023, 17 : 2231 - 2240
  • [28] Underwater Acoustic Object Discrimination for Few-shot Learning
    Chen, Yuan
    Ma, QiMing
    Yu, Jie
    Chen, Tuo
    2019 4TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2019), 2019, : 430 - 434
  • [29] Dynamic relevance learning for few-shot object detection
    Weijie Liu
    Xiaojie Cai
    Chong Wang
    Haohe Li
    Shenghao Yu
    Signal, Image and Video Processing, 2025, 19 (4)
  • [30] Object-Aware Attention in Few-Shot Learning
    Shen, Yeqing
    Mo, Lisha
    Ma, Huimin
    Hu, Tianyu
    Dong, Yuhan
    IMAGE AND GRAPHICS TECHNOLOGIES AND APPLICATIONS, IGTA 2021, 2021, 1480 : 95 - 108