A Lightweight Algorithm for Recognizing Pear Leaf Diseases in Natural Scenes Based on an Improved YOLOv5 Deep Learning Model

被引:4
|
作者
Li, Jianian [1 ,2 ,3 ]
Liu, Zhengquan [1 ]
Wang, Dejin [1 ,2 ,3 ]
机构
[1] Kunming Univ Sci & Technol, Fac Modern Agr Engn, Kunming 650500, Peoples R China
[2] Kunming Univ Sci & Technol, Yunnan Prov Field Sci Observat & Res Stn Water Soi, Kunming 650500, Peoples R China
[3] Kunming Univ Sci & Technol, Yunan Prov Key Lab High Efficiency Water Use & Gre, Kunming 650500, Peoples R China
来源
AGRICULTURE-BASEL | 2024年 / 14卷 / 02期
关键词
leaf disease; coordinate attention; CARAFE; GSConv; YOLOv5; lightweight;
D O I
10.3390/agriculture14020273
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The precise detection of diseases is crucial for the effective treatment of pear trees and to improve their fruit yield and quality. Currently, recognizing plant diseases in complex backgrounds remains a significant challenge. Therefore, a lightweight CCG-YOLOv5n model was designed to efficiently recognize pear leaf diseases in complex backgrounds. The CCG-YOLOv5n model integrates a CA attention mechanism, CARAFE up-sampling operator, and GSConv into YOLOv5n. It was trained and validated using a self-constructed dataset of pear leaf diseases. The model size and FLOPs are only 3.49 M and 3.8 G, respectively. The mAP@0.5 is 92.4%, and the FPS is up to 129. Compared to other lightweight models, the experimental results demonstrate that the CCG-YOLOv5n achieves higher average detection accuracy and faster detection speed with a smaller computation and model size. In addition, the robustness comparison test indicates that the CCG-YOLOv5n model has strong robustness under various lighting and weather conditions, including frontlight, backlight, sidelight, tree shade, and rain. This study proposed a CCG-YOLOv5n model for accurately detecting pear leaf diseases in complex backgrounds. The model is suitable for use on mobile terminals or devices.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Improved YOLOv5 Lightweight Mask Detection Algorithm
    Liu, Chonghao
    Pan, Lihu
    Yang, Fan
    Zhang, Rui
    Computer Engineering and Applications, 2023, 59 (07) : 232 - 241
  • [12] Research on lightweight algorithm for gangue detection based on improved Yolov5
    Yuan, Xinpeng
    Fu, Zhibo
    Zhang, Bowen
    Xie, Zhengkun
    Gan, Rui
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [13] Research on lightweight algorithm for gangue detection based on improved Yolov5
    Xinpeng Yuan
    Zhibo Fu
    Bowen Zhang
    Zhengkun Xie
    Rui Gan
    Scientific Reports, 14
  • [14] Marine zoobenthos recognition algorithm based on improved lightweight YOLOv5
    Zhang, Lijun
    Fan, Jiawen
    Qiu, Yi
    Jiang, Zhe
    Hu, Qingsong
    Xing, Bowen
    Xu, Jingxiang
    ECOLOGICAL INFORMATICS, 2024, 80
  • [15] A Lightweight Military Target Detection Algorithm Based on Improved YOLOv5
    Du, Xiuli
    Song, Linkai
    Lv, Yana
    Qiu, Shaoming
    ELECTRONICS, 2022, 11 (20)
  • [16] Traffic Target Detection in Complex Scenes Based on Improved YOLOv5 Algorithm
    Gu D.-Y.
    Luo Y.-L.
    Li W.-C.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2022, 43 (08): : 1073 - 1079
  • [17] A Lightweight Traffic Sign Recognition Model Based on Improved YOLOv5
    Yang, Jie
    Sun, Ting
    Zhu, Wenchao
    Li, Zonghao
    IEEE ACCESS, 2023, 11 : 115998 - 116010
  • [18] Apple-Net: A Model Based on Improved YOLOv5 to Detect the Apple Leaf Diseases
    Zhu, Ruilin
    Zou, Hongyan
    Li, Zhenye
    Ni, Ruitao
    PLANTS-BASEL, 2023, 12 (01):
  • [19] Lightweight forest smoke and fire detection algorithm based on improved YOLOv5
    Yang, Jie
    Zhu, Wenchao
    Sun, Ting
    Ren, Xiaojun
    Liu, Fang
    PLOS ONE, 2023, 18 (09):
  • [20] Lightweight improved YOLOv5 algorithm for PCB defect detection
    Xie, Yinggang
    Zhao, Yanwei
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):