Tensorized Discrete Multi-View Spectral Clustering

被引:0
|
作者
Li, Qin [1 ]
Yang, Geng [1 ]
Yun, Yu [1 ,2 ]
Lei, Yu [1 ,2 ]
You, Jane [3 ]
机构
[1] Shenzhen Inst Informat Technol, Sch Software Engn, Shenzhen 518172, Peoples R China
[2] Xidian Univ, Sch Telecommun Engn, Xian 710071, Peoples R China
[3] Hong Kong Polytech Univ, Dept Comp, Hong Kong 100872, Peoples R China
关键词
multi-view; spectral clustering; weighted tensor nuclear norm; LOW-RANK; GRAPH;
D O I
10.3390/electronics13030491
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Discrete spectral clustering directly obtains the discrete labels of data, but existing clustering methods assume that the real-valued indicator matrices of different views are identical, which is unreasonable in practical applications. Moreover, they do not effectively exploit the spatial structure and complementary information embedded in views. To overcome this disadvantage, we propose a tensorized discrete multi-view spectral clustering model that integrates spectral embedding and spectral rotation into a unified framework. Specifically, we leverage the weighted tensor nuclear-norm regularizer on the third-order tensor, which consists of the real-valued indicator matrices of views, to exploit the complementary information embedded in the indicator matrices of different views. Furthermore, we present an adaptively weighted scheme that takes into account the relationship between views for clustering. Finally, discrete labels are obtained by spectral rotation. Experiments show the effectiveness of our proposed method.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] A Unified Framework for Multi-view Spectral Clustering
    Zhong, Guo
    Pun, Chi-Man
    2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, : 1854 - 1857
  • [32] Joint Robust Multi-view Spectral Clustering
    Liu, Tong
    Martin, Gaven
    Zhu, YongXin
    Peng, Lin
    Li, Li
    NEURAL PROCESSING LETTERS, 2020, 52 (03) : 1843 - 1862
  • [33] Binary multi-view clustering with spectral embedding
    Ma, Zeqi
    Wong, Wai Keung
    Zhang, Li-ying
    NEUROCOMPUTING, 2023, 557
  • [34] Multi-View Spectral Clustering With Incomplete Graphs
    Zhuge, Wenzhang
    Luo, Tingjin
    Tao, Hong
    Hou, Chenping
    Yi, Dongyun
    IEEE ACCESS, 2020, 8 : 99820 - 99831
  • [35] Binary spectral clustering for multi-view data
    Yan, Xueming
    Zhong, Guo
    Jin, Yaochu
    Ke, Xiaohua
    Xie, Fenfang
    Huang, Guoheng
    INFORMATION SCIENCES, 2024, 677
  • [36] Multi-view clustering by joint spectral embedding and spectral rotation
    Wan, Zhizhen
    Xu, Huiling
    Gao, Quanxue
    NEUROCOMPUTING, 2021, 462 : 123 - 131
  • [37] Weighted Multi-View Spectral Clustering Based on Spectral Perturbation
    Zong, Linlin
    Zhang, Xianchao
    Liu, Xinyue
    Yu, Hong
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 4621 - 4628
  • [38] Multi-view clustering by joint spectral embedding and spectral rotation
    Wan, Zhizhen
    Xu, Huiling
    Gao, Quanxue
    Neurocomputing, 2021, 462 : 123 - 131
  • [39] Fast Multi-view Discrete Clustering with Anchor Graphs
    Qiang, Qianyao
    Zhang, Bin
    Wang, Fei
    Nie, Feiping
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 9360 - 9367
  • [40] Multi-graph fusion for multi-view spectral clustering
    Kang, Zhao
    Shi, Guoxin
    Huang, Shudong
    Chen, Wenyu
    Pu, Xiaorong
    Zhou, Joey Tianyi
    Xu, Zenglin
    KNOWLEDGE-BASED SYSTEMS, 2020, 189