CONSTRUCTION OF MONOTONOUS APPROXIMATION BY FRACTAL INTERPOLATION FUNCTIONS AND FRACTAL DIMENSIONS

被引:5
|
作者
Yu, Binyan [1 ]
Liang, Yongshun [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Monotonous Approximation; Fractal Interpolation Functions; The Hausdorff Dimension; The Box Dimension; Self-Affine Functions; Variation; PARAMETER-IDENTIFICATION PROBLEM; BOX DIMENSION;
D O I
10.1142/S0218348X24400061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we research on the dimension preserving monotonous approximation by using fractal interpolation techniques. A constructive result of the approximating sequence of self-affine continuous functions has been given, which can converge to the object continuous function of bounded variation on [0, 1] monotonously and unanimously, meanwhile their graphs can be any value of the Hausdorff and the Box dimension between one and two. Further, such approximation for continuous functions of unbounded variation or even general continuous functions with non-integer fractal dimension has also been discussed elementarily.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] THE CALCULUS OF FRACTAL INTERPOLATION FUNCTIONS
    BARNSLEY, MF
    HARRINGTON, AN
    JOURNAL OF APPROXIMATION THEORY, 1989, 57 (01) : 14 - 34
  • [22] On a Class of Fractal Interpolation Functions
    Qian Xiaoyuan (Inst. of Math. Scis.
    Journal of Mathematical Research with Applications, 1997, (02) : 46 - 47
  • [23] Parameter Identification for a Class of Bivariate Fractal Interpolation Functions and Constrained Approximation
    Verma, S.
    Viswanathan, P.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (09) : 1109 - 1148
  • [24] Bivariate Fractal Interpolation Functions on Triangular Domain for Numerical Integration and Approximation
    Aparna, M. P.
    Paramanathan, P.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024, 21 (01)
  • [25] A Concretization of an Approximation Method for Non-Affine Fractal Interpolation Functions
    Baicoianu, Alexandra
    Pacurar, Cristina Maria
    Paun, Marius
    MATHEMATICS, 2021, 9 (07)
  • [26] ON FRACTAL DIMENSIONS OF FRACTAL FUNCTIONS USING FUNCTION SPACES
    Chandra, Subhash
    Bbas, Syed A.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 106 (03) : 470 - 480
  • [27] FRACTAL DIMENSION OF MULTIVARIATE α-FRACTAL FUNCTIONS AND APPROXIMATION ASPECTS
    Pandey, Megha
    Agrawal, Vishal
    Som, Tanmoy
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [28] FRACTAL DIMENSION OF MULTIVARIATE α -FRACTAL FUNCTIONS AND APPROXIMATION ASPECTS
    Pandey, MEGHA
    Agrawal, VISHAL
    Som, TANMOY
    Fractals, 2022, 30 (07):
  • [29] BOX DIMENSIONS OF α-FRACTAL FUNCTIONS
    Akhtar, Md. Nasim
    Prasad, M. Guru Prem
    Navascues, M. A.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2016, 24 (03)
  • [30] Fractal Approximation of Vector Functions
    Davletbaev, M. F.
    Igudesman, K. B.
    RUSSIAN MATHEMATICS, 2013, 57 (11) : 61 - 64