Applying Federated Learning on Decentralized Smart Farming: A Case Study

被引:0
|
作者
Siniosoglou, Ilias [1 ]
Xouveroudis, Konstantinos [2 ]
Argyriou, Vasileios [3 ]
Lagkas, Thomas [4 ]
Margounakis, Dimitrios [5 ]
Boulogeorgos, Alexandros-Apostolos A. [1 ]
Sarigiannidis, Panagiotis [1 ]
机构
[1] Univ Western Macedonia, Dept Elect & Comp Engn, Kozani, Greece
[2] MetaMind Innovat PC, R&D Dept, Kozani, Greece
[3] Kingston Univ, Dept Networks & Digital Media, Kingston Upon Thames, Surrey, England
[4] Int Hellen Univ, Dept Comp Sci, Kavala Campus, Thermi, Greece
[5] Sidroco Holdings Ltd, Nicosia, Cyprus
关键词
Federated Learning; Deep Learning; LSTM; Smart farming; Forecasting; Crop Optimisation; Animal Welfare; Synthetic Data; Dataset;
D O I
10.1109/ICCWORKSHOPS57953.2023.10283681
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the field of Smart Agriculture, accurate time series forecasting is essential for farmers to gather and evaluate relevant information about various aspects of their work, such as the management of harvests, livestock, crops, water and soil. One commonly used method for trend forecasting in time series is the Long Short Term Memory (LSTM) Recurrent Neural Network (RNN) model, due to its ability to retain context for longer periods and enhance performance in context-intensive tasks. To further improve the results, the use of Federated Learning (FL) can be implemented, allowing multiple data providers to simultaneously train on a shared model while preserving data privacy. In this study, a Centralised Federated Learning System (CFLS) is leveraged, that implements and evaluates the efficacy of FL in smart agriculture through the use of datasets produced by such infrastructures. The system receives data from multiple clients and creates an optimised global model through model federation. Consequently, the federated approach is compared with the conventional local training to explore the potential of FL in real-time forecasting for the Smart Farming sector.
引用
收藏
页码:1295 / 1300
页数:6
相关论文
共 50 条
  • [41] Decentralized Federated Learning under Communication Delays
    Lee, Na
    Shan, Hangguan
    Song, Meiyan
    Zhou, Yong
    Zhao, Zhongyuan
    Li, Xinyu
    Zhang, Zhaoyang
    2022 IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING (SECON WORKSHOPS), 2022, : 37 - 42
  • [42] When Decentralized Optimization Meets Federated Learning
    Gao, Hongchang
    Thai, My T.
    Wu, Jie
    IEEE NETWORK, 2023, 37 (05): : 233 - 239
  • [43] Personalized Decentralized Federated Learning with Knowledge Distillation
    Jeong, Eunjeong
    Kountouris, Marios
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 1982 - 1987
  • [44] Decentralized Federated Learning for Electronic Health Records
    Lu, Songtao
    Zhang, Yawen
    Wang, Yunlong
    2020 54TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2020, : 245 - 249
  • [45] Migrating Models: A Decentralized View on Federated Learning
    Kiss, Peter
    Horvath, Tomas
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021, PT I, 2021, 1524 : 177 - 191
  • [46] TORR: A Lightweight Blockchain for Decentralized Federated Learning
    Ma, Xuyang
    Xu, Du
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (01) : 1028 - 1040
  • [47] FedDKD: Federated learning with decentralized knowledge distillation
    Xinjia Li
    Boyu Chen
    Wenlian Lu
    Applied Intelligence, 2023, 53 : 18547 - 18563
  • [48] Study on the Selection Method of Federated Learning Clients for Smart Manufacturing
    Yang, Chi
    Zhao, Xiaoli
    ELECTRONICS, 2023, 12 (11)
  • [49] Efficient decentralized optimization for edge-enabled smart manufacturing: A federated learning-based framework
    Liu, Huan
    Li, Shiyong
    Li, Wenzhe
    Sun, Wei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 157 : 422 - 435
  • [50] Demystifying Swarm Learning: An Emerging Decentralized Federated Learning System
    Han, Jialiang
    Han, Yudong
    Zhang, Ying
    Jing, Xiang
    Ma, Yun
    2024 IEEE 24TH INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING, CCGRID 2024, 2024, : 380 - 386