On Gorenstein circulant graphs

被引:1
|
作者
Nikseresht, Ashkan [1 ]
Oboudi, Mohammad Reza [1 ]
机构
[1] Shiraz Univ, Coll Sci, Dept Math, Shiraz 7145744776, Iran
关键词
Gorenstein simplicial complex; Edge ideal; Circulant graph; CHORDALITY; CLUTTERS;
D O I
10.1016/j.disc.2023.113472
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize some graphs with a Gorenstein edge ideal. In particular, we show that if G is a circulant graph with vertex degree at most four or a circulant graph of the form Cn(1, ... , d) for some d <= n/2, then G is Gorenstein if and only if G similar to= tK2 or G similar to= tCn or G similar to= tC13(1, 5) for some integers t and n >= 4.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] 4-circulant graphs
    Davis, GJ
    Domke, GS
    Garner, CR
    ARS COMBINATORIA, 2002, 65 : 97 - 110
  • [22] Pancyclicity of recursive circulant graphs
    Araki, T
    Shibata, Y
    INFORMATION PROCESSING LETTERS, 2002, 84 (03) : 173 - 173
  • [23] A characterization of Gorenstein planar graphs
    Tran Nam Trung
    50TH ANNIVERSARY OF GROEBNER BASES, 2018, 77 : 399 - 409
  • [24] On the metric dimension of circulant graphs
    Gao, Rui
    Xiao, Yingqing
    Zhang, Zhanqi
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02): : 328 - 337
  • [25] Star extremal circulant graphs
    Lih, KW
    Liu, DDF
    Zhu, XD
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (04) : 491 - 499
  • [26] THE METRIC DIMENSION OF CIRCULANT GRAPHS
    Tapendra, B. C.
    Dueck, Shonda
    OPUSCULA MATHEMATICA, 2025, 45 (01) : 39 - 51
  • [27] COMBINATORIAL REFINEMENT ON CIRCULANT GRAPHS
    Kluge, Laurence
    COMPUTATIONAL COMPLEXITY, 2024, 33 (02)
  • [28] On the Partition Dimension of Circulant Graphs
    Grigorious, Cyriac
    Stephen, Sudeep
    Rajan, Bharati
    Miller, Mirka
    COMPUTER JOURNAL, 2017, 60 (02): : 180 - 184
  • [29] A SURVEY ON UNDIRECTED CIRCULANT GRAPHS
    Monakhova, E. A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (01)
  • [30] Reliability analysis of circulant graphs
    Li, QL
    Li, Q
    NETWORKS, 1998, 31 (02) : 61 - 65