A long-life aqueous redox flow battery based on a metal-organic framework perovskite [CH3NH3][Cu(HCOO)3] as negative active substance

被引:2
|
作者
Wu, Binglan [1 ]
Yang, Chongrong [1 ]
Liu, Fujia [1 ]
Zhu, Haiyan [2 ]
Xie, Gang [1 ,2 ]
Li, Zuo-Xi [3 ]
Yang, Ying [1 ,2 ]
机构
[1] Northwest Univ, Coll Chem & Mat Sci, Shaanxi Prov Key Lab Electroanalyt Chem, Key Lab Synthet & Nat Funct Mol,Minist Educ, Xian 710127, Shaanxi, Peoples R China
[2] Northwest Univ, Carbon Neutral Coll Yulin, Xian 710049, Shaanxi, Peoples R China
[3] Suzhou Univ Sci & Technol, Inst Mat Sci & Devices, Sch Mat Sci & Engn, Suzhou 215009, Jiangsu, Peoples R China
关键词
Redox flow battery; Stability; Metal -organic framework; Perovskite; Negative active substance; CARBON FELT; PERFORMANCE; ELECTRODE; ACID; ZINC;
D O I
10.1016/j.applthermaleng.2023.120384
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work, one water-soluble metal-organic framework [CH3NH3][Cu(HCOO)3] with a perovskite structure is synthesized as negative active substance, which is used to construct a redox flow battery by combining with the positive active substance 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (4-OH-TEMPO). The battery voltage of 0.696 V is achieved by utilizing citric acid - disodium hydrogen phosphate (C6H8O7-Na2HPO4) buffer and NaClO4 as supporting electrolyte. Cyclic voltammetry is determined to investigate the electrode reaction kinetics of positive and negative active substance. Moreover, the battery is repeatedly charged and discharged under room temperature at varied current densities, and runs stably for 40 cycles, and the voltage efficiency and energy efficiency at the current density of 7.5 mA cm-2 are up to 74.96 % and 66.52 %, respectively. The highest coulombic efficiency up to 96.87 % is reached at 40 mA cm-2. The infinite ordered structure of [CH3NH3][Cu (HCOO)3] reduces the crossover contamination of electrolyte and the deposition of copper ions, improving the cycle life and stability of the battery.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Disorder-order transitions in the perovskite metal-organic frameworks [(CH3)2NH2] [M(HCOO)3] at high pressure
    Collings, Ines
    Bykov, Maxim
    Bykova, Elena
    Hanfland, Michael
    van Smaalen, Sander
    Dubrovinsky, Leonid
    Dubrovinskaia, Natalia
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : E59 - E59
  • [22] Phase Transition and Cationic Motion in a Metal-Organic Perovskite, Dimethylammonium Zinc Formate [(CH3)2NH2][Zn(HCOO)3]
    Asaji, Tetsuo
    Ashitomi, Kayo
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (19): : 10185 - 10190
  • [23] Electron paramagnetic resonance and electric characterization of a [CH3NH2NH2][Zn(HCOO)3] perovskite metal formate framework
    Simenas, Mantas
    Balciunas, Sergejus
    Trzebiatowska, Monika
    Ptak, Maciej
    Maczka, Miroslaw
    Voelkel, Georg
    Poeppl, Andreas
    Banys, Juras
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (18) : 4526 - 4536
  • [24] Phase transition and ferroelectricity of composites based on ferroelectric metal-organic framework of [NH4][Zn(HCOO)3]
    Hoai Thuong Nguyen
    Minh Thuyen Chau
    Thi Bich Thao Phan
    Milinskiy, A. Yu
    Baryshnikov, S., V
    FERROELECTRICS LETTERS SECTION, 2022, 49 (1-3) : 22 - 29
  • [25] Large Negative Thermal Expansion, Thermodynamic Properties, And Temperature-Dependent Raman Scattering of a New Metal-Organic Perovskite Framework [C(NH2)3][Ca(HCOO)3]
    Haussuehl, Eiken
    Bayarjargal, Lkhamsuren
    Friedrich, Alexandra
    Luchitskaia, Rita
    Buescher, Julia
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (14): : 6427 - 6435
  • [26] The structural, phonon and optical properties of [CH3NH3]M0.5CrxAl0.5-x(HCOO)3 (M = Na, K; x=0, 0.025, 0.5) metal-organic framework perovskites for luminescence thermometry
    Ptak, Maciej
    Dziuk, Blazej
    Stefanska, Dagmara
    Hermanowicz, Krzysztof
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (15) : 7965 - 7972
  • [27] Measuring Motional Dynamics of [(CH3)2NH2]+ in the Perovskite-Like Metal-Organic Framework [(CH3)2NH2][Zn(HCOO)3]: The Value of Low-Frequency Electron Paramagnetic Resonance
    Bertaina, Sylvain
    Abhyankar, Nandita
    Orio, Maylis
    Dalal, Naresh S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (28): : 16431 - 16436
  • [28] Temperature dependent negative differential resistance behavior in multiferroic metal organic framework (CH3)2NH2 Mn (HCOO)3 crystals
    Malik, Vikas
    Maity, Sarmistha
    Chatterjee, Ratnamala
    ORGANIC ELECTRONICS, 2018, 56 : 5 - 10
  • [29] EPR Study of Structural Phase Transition in Manganese-Doped [(CH3)2NH2][Zn(HCOO)3] Metal-Organic Framework
    Simenas, Mantas
    Ciupa, Aneta
    Maczka, Miroslaw
    Poeppl, Andreas
    Banys, Juras
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (43): : 24522 - 24528
  • [30] Mechanism of the order-disorder phase transition, and glassy behavior in the metal-organic framework [(CH3)2NH2]Zn(HCOO)3
    Besara, Tiglet
    Jain, Prashant
    Dalal, Naresh S.
    Kuhns, Philip L.
    Reyes, Arneil P.
    Kroto, Harold W.
    Cheetham, Anthony K.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (17) : 6828 - 6832