Facile and scalable construction of nitrogen-doped lignin-based carbon nanospheres for high-performance supercapacitors

被引:25
|
作者
Yang, Jiamei [1 ]
Xiong, Fuquan [1 ,3 ]
Wang, Hang [1 ]
Ma, Bole [1 ]
Guo, Feng [1 ]
Qing, Yan [1 ]
Chu, Fuxiang [2 ]
Wu, Yiqiang [1 ,3 ]
机构
[1] Cent South Univ Forestry & Technol, Coll Mat Sci & Engn, Changsha 410004, Peoples R China
[2] Chinese Acad Forestry, Res Inst Wood Ind, Beijing 100091, Peoples R China
[3] 498 Shaoshan South Rd, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Lignin; Nitrogen doping; Carbon nanospheres; Supercapacitor; HIERARCHICAL POROUS CARBON; EFFICIENT REMOVAL; MESOPOROUS CARBON; SPHERES; ELECTRODES; OXYGEN; NANOPARTICLES; MICROSPHERES; CAPACITANCE; FABRICATION;
D O I
10.1016/j.fuel.2023.128007
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lignin-based carbon nanospheres have a high specific surface area, large porosity, and excellent stability, while being used in potential applications such as catalyst carriers, adsorbents, and energy storage materials. However, the low hydrophilicity and poor chemical activity of pure carbon nanospheres make it challenging for those materials to meet the needs of various functions. The introduction of nitrogen atoms can increase the active site of the materials, thereby improving the performance. In this study, lignin nanospheres (LNS) with a solid content of 5.8 mg mL-1 in the suspension and an actual yield of 85% were prepared using a gamma-valerolactone/water binary system. Based on that, nitrogen-doped lignin-based carbon nanospheres (NCS) were successfully constructed. The doping ratio of urea and carbonization temperature significantly affected the physicochemical properties of the carbon materials. By varying the urea doping ratio and temperature, the nitrogen atom content of the NCS varied from 5.0 to 10.9 at.%. After assembling them into electrochemical capacitors, NCS-15-700 exhibited excellent capacitance of 232 F g-1 at 0.5 A g-1 and 10,000 cycles long cycling stability (retention of 97.2%). The specific capacitance was enhanced by approximately 40% compared to undoped lignin-based carbon nanospheres (LCS). It is evident that nitrogen-doped lignin-based carbon nanospheres have promising applicability in supercapacitors.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Cellulose-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitors
    Peng Song
    XiaoPing Shen
    XiaoMei He
    KaiHui Feng
    LiRong Kong
    ZhenYuan Ji
    LinZhi Zhai
    GuoXing Zhu
    DongYang Zhang
    Cellulose, 2019, 26 : 1195 - 1208
  • [42] Nitrogen-doped Porous Carbon Derived from Rapeseed residues for High-performance Supercapacitors
    Sun, Kanjun
    Guo, Dongyang
    Zheng, Xiaoping
    Zhu, Yanrong
    Zheng, Yanping
    Ma, Mingguang
    Zhao, Guohu
    Ma, Guofu
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (06): : 4743 - 4754
  • [43] Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors
    Chen, Li-Feng
    Lu, Yan
    Yu, Le
    Lou, Xiong Wen
    ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (08) : 1777 - 1783
  • [44] Nitrogen-doped hollow carbon spheres with tunable shell thickness for high-performance supercapacitors
    Zhang, Dawei
    Shen, Shaodian
    Xiao, Xiuzhen
    Mao, Dongsen
    Yan, Baoman
    RSC ADVANCES, 2020, 10 (44) : 26546 - 26552
  • [45] Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors
    Gao, Feng
    Qu, Jiangying
    Zhao, Zongbin
    Wang, Zhiyu
    Qiu, Jieshan
    ELECTROCHIMICA ACTA, 2016, 190 : 1134 - 1141
  • [46] Ultralight Flexible Electrodes of Nitrogen-Doped Carbon Macrotube Sponges for High-Performance Supercapacitors
    Fu, Min
    Lv, Ruitao
    Lei, Yu
    Terrones, Mauricio
    SMALL, 2021, 17 (01)
  • [47] Cellulose-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitors
    Song, Peng
    Shen, XiaoPing
    He, XiaoMei
    Feng, KaiHui
    Kong, LiRong
    Ji, ZhenYuan
    Zhai, LinZhi
    Zhu, GuoXing
    Zhang, DongYang
    CELLULOSE, 2019, 26 (02) : 1195 - 1208
  • [48] Hierarchical nitrogen-doped porous carbon derived from lecithin for high-performance supercapacitors
    Demir, Muslum
    Saraswat, Sushil Kumar
    Gupta, Ram B.
    RSC ADVANCES, 2017, 7 (67): : 42430 - 42442
  • [49] Facile preparation of nitrogen-doped hierarchical porous carbon derived from lignin with KCl for supercapacitors
    Wang, Shuai
    Feng, Junfeng
    Pan, Hui
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 651
  • [50] Construction of Ultrathin Nitrogen-Doped Porous Carbon Nanospheres Coated With Polyaniline Nanorods for Asymmetric Supercapacitors
    Yu, Pingping
    Wang, Qunliang
    Zheng, Lingxia
    Jiang, Yanfeng
    FRONTIERS IN CHEMISTRY, 2019, 7