Well-posedness and exponential decay for the Moore-Gibson-Thompson equation with time-dependent memory kernel

被引:2
|
作者
Tu, Zhiyu [1 ]
Liu, Wenjun [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Ctr Appl Math Jiangsu Prov, Nanjing, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Jiangsu Int Joint Lab Syst Modeling & Data Anal, Nanjing, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
exponential decay; Moore-Gibson-Thompson equation; time-dependent memory; well-posedness; GENERAL DECAY; VISCOELASTICITY; BEHAVIOR; MODEL;
D O I
10.1002/mma.9133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the well-posedness and exponential decay of Moore-Gibson-Thompson equation with memory tau & part;(ttt)u + alpha & part;(tt)u + h(t)(0)Au + bA & part;(t)u -integral(infinity)(0) h ' t(s)Au(t - s)ds = 0.Here, the main feature is that the memory kernel h(t)(middot) depends on time. By using the linear semigroup theory, we prove that the above system is global well-posedness. In addition, the exponential decay of the related energy is shown to occur, provided that the memory kernel is controlled by a negative exponential.
引用
收藏
页码:10465 / 10479
页数:15
相关论文
共 50 条
  • [21] SPECTRAL ANALYSIS AND EXPONENTIAL STABILITY OF A MOORE-GIBSON-THOMPSON EQUATION
    Bezerra, Flank
    Santos, Lucas
    Silva, Maria
    takaessu Jr, Carlos
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024,
  • [22] Optimal decay rates for nonlinear Moore-Gibson-Thompson equation with memory and Neumann boundary
    Zhang, Hui
    APPLICABLE ANALYSIS, 2024,
  • [23] A unified analysis framework for generalized fractional Moore-Gibson-Thompson equations: Well-posedness and singular limits
    Meliani, Mostafa
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (06) : 2540 - 2579
  • [24] Moore–Gibson–Thompson equation with memory, part I: exponential decay of energy
    Irena Lasiecka
    Xiaojun Wang
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [25] A note on the Moore-Gibson-Thompson equation with memory of type II
    Dell'Oro, Filippo
    Lasiecka, Irena
    Pata, Vittorino
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (04) : 1251 - 1268
  • [26] Lp-Lq-Well Posedness for the Moore-Gibson-Thompson Equation with Two Temperatures on Cylindrical Domains
    Lizama, Carlos
    Murillo-Arcila, Marina
    MATHEMATICS, 2020, 8 (10) : 1 - 8
  • [27] General decay rate for a Moore-Gibson-Thompson equation with infinite history
    Liu, Wenjun
    Chen, Zhijing
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (02):
  • [28] NEW GENERAL DECAY RESULT FOR A FOURTH-ORDER MOORE-GIBSON-THOMPSON EQUATION WITH MEMORY
    Liu, Wenjun
    Chen, Zhijing
    Tu, Zhiyu
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (01): : 433 - 457
  • [29] Moore-Gibson-Thompson equation with memory in a history framework: a semigroup approach
    Alves, M. O.
    Caixeta, A. H.
    Jorge Silva, M. A.
    Rodrigues, J. H.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04):
  • [30] Convolution Kernel Determination Problem in the Third Order Moore-Gibson-Thompson Equation
    Durdiev, D. K.
    Boltaev, A. A.
    Rahmonov, A. A.
    RUSSIAN MATHEMATICS, 2023, 67 (12) : 1 - 13