General Synthesis of High-Entropy Oxide Nanofibers

被引:15
|
作者
Zhang, Mengyuan [1 ]
Ye, Jian [2 ]
Gao, Ying [1 ]
Duan, Xiaolan [1 ]
Zhao, Jiahua [1 ]
Zhang, Shuangshuang [1 ]
Lu, Xiaoyan [2 ]
Luo, Kongliang [2 ]
Wang, Qiongqiong [2 ]
Niu, Qiang [3 ]
Zhang, Pengfei [1 ,2 ]
Dai, Sheng [4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Ningxia Univ, Coll Chem & Chem Engn, State Key Lab High Efficiency Utilizat Coal & Gree, Yinchuan 750021, Peoples R China
[3] Inner Mongolia Erdos Power & Met Grp Co Ltd, Ordos 017010, Inner Mongolia, Peoples R China
[4] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37830 USA
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
high entropy oxide; high entropy catalysts; nanofibers; dry reforming of methane; electrospinning; OXYGEN VACANCY; CO OXIDATION; NANOPARTICLES; REDUCTION; CATALYSTS; PROPENE; METHANE; FACETS;
D O I
10.1021/acsnano.3c07506
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The discovery of high-entropy oxides (HEOs) in 2015 has provided a family of potential solid catalysts, due to their tunable components, abundant defects or lattice distorts, excellent thermal stability (Delta G down arrow = Delta H - T Delta S up arrow), and so on. When facing the heterogeneous catalysis by HEOs, the micrometer bulky morphology and low surface areas (e.g., <10 m(2) g(-1)) by traditional synthesis methods obstructed their way. In this work, an electrospinning method to fabricate HEO nanofibers with diameters of 50-100 nm was demonstrated. The key point lay in the formation of one-dimensional filamentous precursors, during which the uniform dispersion of five metal species with disordered configuration would help to crystallize into single-phase HEOs at lower temperatures: inverse spinel (Cr0.2Mn0.2Co0.2Ni0.2Fe0.2)(3)O-4 (400 degrees C), perovskite La(Mn0.2Cu0.2Co0.2Ni0.2Fe0.2)O-3 (500 degrees C), spinel Ni0.2Mg0.2Cu0.2Mn0.2Co0.2)Al2O4 (550 degrees C), and cubic Ni0.2Mg0.2Cu0.2Zn0.2Co0.2O (750 degrees C). As a proof-of-concept, (Ni3MoCoZn)Al12O24 nanofiber exhibited good activity (CH4 Conv. > 96%, CO2 Conv. > 99%, H-2/CO approximate to 0.98), long-time stability (>100 h) for the dry reforming of methane (DRM) at 700 degrees C without coke deposition, better than control samples (Ni3MoCoZn)Al12O24-Coprecipitation-700 (CH4 Conv. < 3%, CO2 Conv. < 7%). The reaction mechanism of DRM was studied by in situ infrared spectroscopy, CO2-TPD, and CO2/CH4-TPSR. This electrospinning method provides a synthetic route for HEO nanofibers for target applications.
引用
收藏
页码:1449 / 1463
页数:15
相关论文
共 50 条
  • [21] High-Entropy Oxide Solar Selective Absorber
    Yi-Cheng Lin
    Fitri Nur Indah Sari
    Siang-Yun Li
    Jyh-Ming Ting
    High Entropy Alloys & Materials, 2024, 2 (1): : 48 - 55
  • [22] High-Entropy Perovskite Oxide Photonic Synapses
    Bai, Zhongwei
    Luo, Bingcheng
    Peng, Tao
    Wang, Jianyuan
    ADVANCED OPTICAL MATERIALS, 2024, 12 (18)
  • [23] High-entropy oxide phases with magnetoplumbite structure
    Vinnik, D. A.
    Trofimov, E. A.
    Zhivulin, V. E.
    Zaitseva, O. V.
    Gudkova, S. A.
    Starikov, A. Yu.
    Zherebtsov, D. A.
    Kirsanova, A. A.
    Haessner, M.
    Niewa, R.
    CERAMICS INTERNATIONAL, 2019, 45 (10) : 12942 - 12948
  • [24] Rapid Chemical Synthesis of High-Entropy Oxide Colloids under Ambient Conditions
    Bolar, Saikat
    Ito, Akitaka
    Yuan, Chunyu
    Ito, Yoshikazu
    Fujita, Takeshi
    ACS MATERIALS LETTERS, 2024, 6 (12): : 5325 - 5332
  • [25] Low-Temperature Synthesis of Mesoporous Half-Metallic High-Entropy Spinel Oxide Nanofibers for Photocatalytic CO2 Reduction
    Zhang, Liang
    Xia, Shuhui
    Zhang, Xiaohua
    Yao, Yonggang
    Zhang, Yuanyuan
    Chen, Shuo
    Chen, Yuehui
    Yan, Jianhua
    ACS NANO, 2024, 18 (07) : 5322 - 5334
  • [26] A general flame aerosol route to high-entropy nanoceramics
    Liu, Shuo
    Pao, Chih-Wen
    Chen, Jeng-Lung
    Li, Sichi
    Chen, Kaiwen
    Xuan, Zhengxi
    Song, Chengyu
    Urban, Jeffrey J.
    Swihart, Mark T.
    Dun, Chaochao
    MATTER, 2024, 7 (11) : 3994 - 4013
  • [27] High-entropy alloy nanoparticles on aligned electronspun carbon nanofibers for supercapacitors
    Xu, Xiang
    Du, Yankun
    Wang, Chunhao
    Guo, Yang
    Zou, Jianwu
    Zhou, Ke
    Zeng, Zheng
    Liu, Yiyang
    Li, Liqing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 822
  • [28] A general approach to high-entropy metallic nanowire electrocatalysts
    Sun, Yingjun
    Zhang, Wenshu
    Zhang, Qinghua
    Li, Yingjie
    Gu, Lin
    Guo, Shaojun
    MATTER, 2023, 6 (01) : 193 - 205
  • [29] From High-Entropy Alloys to High-Entropy Steels
    Raabe, Dierk
    Tasan, Cemal Cem
    Springer, Hauke
    Bausch, Michael
    STEEL RESEARCH INTERNATIONAL, 2015, 86 (10) : 1127 - 1138
  • [30] Entropy Engineering and Tunable Magnetic Order in the Spinel High-Entropy Oxide
    Johnstone, Graham H. J.
    Gonzalez-Rivas, Mario U.
    Taddei, Keith M.
    Sutarto, Ronny
    Sawatzky, George A.
    Green, Robert J.
    Oudah, Mohamed
    Hallas, Alannah M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (45) : 20590 - 20600