Hybrid Spatial and Deep Learning-based Point Cloud Compression with Layered Representation on 3D Shape

被引:0
|
作者
Kimata, Hideaki [1 ]
机构
[1] Kogakuin Univ, Fac Informat, Dept Informat Design, Tokyo, Japan
关键词
Point Cloud Compression; Deep Learning; 3D Object Shape;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It is expected that the shapes of real-world objects such as buildings and people can be sensed, stored as point clouds, and utilized. For efficiently storing and transmitting a huge amount of point cloud data, point cloud compression methods based on deep learning have been studied. In order to grasp an overview or details of a desired building or person on a display, it is an important function to extract whole or a desired part of the point cloud from the compressed data and represent the characteristic shape of the object. In this paper, a hybrid point cloud encoding method is proposed, which consists of a layered structuring that presents the main features of the point cloud with various number of points and an efficient block-wise encoding by combining deep learning.
引用
收藏
页码:138 / 145
页数:8
相关论文
共 50 条
  • [41] Progressive Framework of Learning 3D Object Classes and Orientations from Deep Point Cloud Representation
    Lee, Sukhan
    Cheng, Wencan
    PROCEEDINGS OF THE 2020 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM), 2020,
  • [42] Deep learning-based framework for Shape Instance Registration on 3D CAD models
    Figueiredo, Lucas
    Ivson, Paulo
    Celes, Waldemar
    COMPUTERS & GRAPHICS-UK, 2021, 101 : 72 - 81
  • [43] 3D Point Cloud Compression: A Survey
    Cao, Chao
    Preda, Marius
    Zaharia, Titus
    PROCEEDINGS WEB3D 2019: THE 24TH INTERNATIONAL ACM CONFERENCE ON 3D WEB TECHNOLOGY, 2019,
  • [44] Geometric 3D point cloud compression
    Morell, Vicente
    Orts, Sergio
    Cazorla, Miguel
    Garcia-Rodriguez, Jose
    PATTERN RECOGNITION LETTERS, 2014, 50 : 55 - 62
  • [45] DEEP LEARNING ON POINT CLOUD FOR 3D CLASSIFICATION BASED ON SPIKING NEURAL NETWORK
    Zhang Silin
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [46] Deep Learning Based 3D Point Cloud Regression for Estimating Forest Biomass
    Oehmcke, Stefan
    Li, Lei
    Revenga, Jaime C.
    Nord-Larsen, Thomas
    Trepekli, Katerina
    Gieseke, Fabian
    Igel, Christian
    30TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2022, 2022, : 275 - 278
  • [47] Inception-based Deep Learning Architecture for 3D Point Cloud Completion
    Saffi, Houda
    Hmamouche, Youssef
    Elharrouss, Omar
    Seghrouchni, Amal El Fallah
    2022 18TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2022), 2022,
  • [48] Research progress of 3D point cloud analysis methods based on deep learning
    Chen H.
    Wu Y.
    Zhang Y.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2023, 44 (11): : 130 - 158
  • [49] Deep Learning Based Semantic Labelling of 3D Point Cloud in Visual SLAM
    Qi, Xuxiang
    Yang, Shaowu
    Yan, Yuejin
    3RD INTERNATIONAL CONFERENCE ON AUTOMATION, CONTROL AND ROBOTICS ENGINEERING (CACRE 2018), 2018, 428
  • [50] DEEP LEARNING-BASED QUALITY ASSESSMENT OF 3D POINT CLOUDS WITHOUT REFERENCE
    Chetouani, Aladine
    Quach, Maurice
    Valenzise, Giuseppe
    Dufaux, Frederic
    2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,