Ensemble Kalman Inversion for upstream parameter estimation and indirect streamflow correction: A simulation study

被引:2
|
作者
Pensoneault, Andrew [1 ,2 ,3 ]
Krajewski, Witold F. [1 ,2 ]
Velasquez, Nicolas [1 ,2 ]
Zhu, Xueyu [3 ]
Mantilla, Ricardo [4 ]
机构
[1] Univ Iowa, Iowa Flood Ctr, Iowa City, IA 52242 USA
[2] Univ Iowa, IIHR Hydrosci & Engn, Iowa City, IA 52242 USA
[3] Univ Iowa, Dept Math, Iowa City, IA USA
[4] Univ Manitoba, Dept Civil Engn, Winnipeg, MB, Canada
关键词
Data assimilation; Ensemble Kalman Filter; Ensemble Kalman Inversion; Inverse problems; Parameter estimation; HYDROLOGICAL DATA ASSIMILATION; FILTER; FLOW; MODEL; STATE; RECESSION; SMOOTHER; SYSTEM;
D O I
10.1016/j.advwatres.2023.104545
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Data assimilation (DA) techniques such as the Ensemble Kalman filter (EnKF) and its extensions allow for realtime corrections of state-space models and model parameters based on an assumption of Gaussian error. The hydrological DA literature primarily documents applications of the EnKF to solve sequential state estimation problems. Recent advances in the DA literature demonstrate the potential of applying EnKF-based methods as efficient, derivative-free algorithms to solve various general Bayesian inverse problems, such as parameter estimation, while simultaneously providing Uncertainty Quantification (UQ). In this paper, the authors employ the Ensemble Kalman Inversion (EKI) algorithm to infer the distribution of a set of routing parameters. Through this correction, we improve streamflow at locations upstream of the gauged site in a virtual catchment setting. The algorithm enables learning spatially distributed routing parameters with observations available only at the outlet. The study reveals that this method sufficiently improves model performance throughout the basin. The performance of this method is demonstrated in a virtual catchment for three different model/data configurations. Favorable results, even with model misspecification, indicate that this method holds promise for operational application and more general hydrologic parameter estimation problems.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] RESAMPLED ENSEMBLE KALMAN INVERSION FOR BAYESIAN PARAMETER ESTIMATION WITH SEQUENTIAL DATA
    Wu, Jiangqi
    Wen, Linjie
    Li, Jinglai
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (04): : 837 - 850
  • [2] Nonglobal Parameter Estimation Using Local Ensemble Kalman Filtering
    Bellsky, Thomas
    Berwald, Jesse
    Mitchell, Lewis
    MONTHLY WEATHER REVIEW, 2014, 142 (06) : 2150 - 2164
  • [3] An Inequality Constrained Ensemble Kalman Filter for Parameter Estimation Application
    Goh, Shu Ting
    Soon, Jing Jun
    Low, Kay-Soon
    2018 IEEE AEROSPACE CONFERENCE, 2018,
  • [4] Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter
    Annan, JD
    Lunt, DJ
    Hargreaves, JC
    Valdes, PJ
    NONLINEAR PROCESSES IN GEOPHYSICS, 2005, 12 (03) : 363 - 371
  • [5] Constrained Dual Ensemble Kalman Filter for State and Parameter Estimation
    Bavdekar, Vinay A.
    Prakash, J.
    Shah, Sirish L.
    Gopaluni, R. Bhushan
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 3093 - 3098
  • [6] Groundwater parameter estimation using the ensemble Kalman filter with localization
    Nan, Tongchao
    Wu, Jichun
    HYDROGEOLOGY JOURNAL, 2011, 19 (03) : 547 - 561
  • [7] Joint state and parameter estimation with an iterative ensemble Kalman smoother
    Bocquet, M.
    Sakov, P.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2013, 20 (05) : 803 - 818
  • [8] A Parameter-Estimation Method Using the Ensemble Kalman Filter for Flow and Thermal Simulation in an Engine Compartment
    Kusano, Kazuya
    Yamakawa, Hironobu
    Hano, Kenich
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2018, 140 (12):
  • [9] Spatial variability of geomechanical parameter, estimation via ensemble kalman filter
    Zhao, Hong-Liang
    Feng, Xia-Ting
    Zhang, Dong-Xiao
    Zhou, Hui
    Yantu Lixue/Rock and Soil Mechanics, 2007, 28 (10): : 2219 - 2223
  • [10] Spatial variability of geomechanical parameter estimation via ensemble kalman filter
    Zhao Hong-liang
    Feng Xia-ting
    Zhang Dong-xiao
    Zhou Hui
    ROCK AND SOIL MECHANICS, 2007, 28 (10) : 2219 - +