Tensegrity triboelectric nanogenerator for broadband blue energy harvesting in all-sea areas

被引:20
|
作者
Ning, Heng [1 ,2 ,3 ]
Zhou, Weiyu [1 ,2 ,3 ]
Tuo, Liang [2 ]
Liang, Chuangjian [1 ,2 ,3 ]
Chen, Chunjin [1 ,2 ,3 ]
Li, Songying [1 ,2 ,3 ]
Qu, Hang [1 ,2 ,3 ]
Wan, Lingyu [1 ,2 ,3 ]
Liu, Guanlin [1 ,2 ,3 ]
机构
[1] Guangxi Univ, Carbon Peak & Neutral Sci & Technol Dev Inst, Ctr Nanoenergy Res, Guangxi Coll,Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[2] Guangxi Univ, Univ Key Lab Blue Energy & Syst Integrat, Carbon Peak & Neutral Sci & Technol Dev Inst, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[3] State Key Lab Featured Met Mat & Life cycle Safety, Nanning 530004, Peoples R China
关键词
Triboelectric nanogenerator; Tensegrity; Broadband; Blue energy; WATER-WAVE ENERGY;
D O I
10.1016/j.nanoen.2023.108906
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The integration of high-density friction layer units is a promising approach for achieving high output in triboelectric nanogenerators (TENGs). Yet, the synchronization and sufficient contact separation of these high-density layer units are inherently challenging due to the cumulative impact of gravity. Herein, a tensegrity structure was applied and effectively organized the high-density stacked TENG units into an ordered whole, thereby proposing the T-TENG. Along with achieving orderly contact and separation of high-density friction layers, the T-TENG effectively reduced the device's height (up to 52%) and improved the friction layer surface area density (up to 1.07 cm-1). Significantly, the built-in prestress modulation not only enhances the device's load-bearing capacity but also enables ease in changing the T-TENG's response frequency by adjusting the prestress value. This is especially suitable for efficiently capturing omnidirectional wave energy in all-sea areas with frequency variations. The working mechanism and output influencing parameters of T-TENG were systematically expounded, and it demonstrated a maximum output voltage of up to 1020 V and output charge per unit time of 0.816 mC/ min, sufficient to light up to 1512 LEDs directly. Moreover, customization of low-loss gas discharge tubes to amplify outputs allows T-TENG to harvest wave energy for power supply to small electronic devices such as water quality testing pens and Bluetooth modules when placed over water bodies. This work provides a foundational model to develop high-density friction layers and high-output TENGs.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Triboelectric-electromagnetic hybrid nanogenerator for harvesting blue energy and creating an ocean wave warning system
    Wang, Weichao
    Zhang, Yaju
    Wu, Guoxi
    Zhao, Zhengyin
    Wu, Yonghui
    Zheng, Haiwu
    NANOSCALE ADVANCES, 2024, 6 (14): : 3566 - 3572
  • [42] 3D Printed Double Roller-Based Triboelectric Nanogenerator for Blue Energy Harvesting
    Kim, Inkyum
    Kim, Daewon
    MICROMACHINES, 2021, 12 (09)
  • [43] Direct Current Fabric Triboelectric Nanogenerator for Biomotion Energy Harvesting
    Chen, Chaoyu
    Guo, Hengyu
    Chen, Lijun
    Wang, Yi-Cheng
    Pu, Xianjie
    Yu, Weidong
    Wang, Fumei
    Du, Zhaoqun
    Wang, Zhong Lin
    ACS NANO, 2020, 14 (04) : 4585 - 4594
  • [44] SOME ADVANCES IN ENERGY HARVESTING TECHNOLOGY OF NONLINEAR TRIBOELECTRIC NANOGENERATOR
    Tan, Dongguo
    Chi, Shimin
    Ou, Xu
    Zhou, Jiaxi
    Wang, Kai
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2024, 56 (09): : 2495 - 2510
  • [45] Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy
    Wang, Yuqi
    Yu, Xin
    Yin, Mengfei
    Wang, Jianlong
    Gao, Qi
    Yu, Yang
    Cheng, Tinghai
    Wang, Zhong Lin
    NANO ENERGY, 2021, 82
  • [46] Liquid-Liquid Triboelectric Nanogenerator for Harvesting Distributed Energy
    Zhang, Ruotong
    Lin, Haisong
    Pan, Yi
    Li, Chang
    Yang, Zhenyu
    Tian, Jingxuan
    Shum, Ho Cheung
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (51)
  • [47] Triboelectric-thermoelectric hybrid nanogenerator for harvesting frictional energy
    Kim, Min-Ki
    Kim, Myoung-Soo
    Jo, Sung-Eun
    Kim, Yong-Jun
    SMART MATERIALS AND STRUCTURES, 2016, 25 (12)
  • [48] Magnets Assisted Triboelectric Nanogenerator for Harvesting Water Wave Energy
    Ouyang, Ri
    Miao, Juan
    Wu, Tao
    Chen, Jiajia
    Sun, Chengfu
    Chu, Jing
    Chen, Dingming
    Li, Xin
    Xue, Hao
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (09):
  • [49] Multifunctional triboelectric nanogenerator for wind energy harvesting and mist catching
    Zhang, Fei
    Zheng, Lin
    Li, Hao
    Yu, Gao
    Wang, Shengbo
    Xing, Fangjing
    Wang, Zhong Lin
    Chen, Baodong
    CHEMICAL ENGINEERING JOURNAL, 2024, 488
  • [50] Highly Integrated Triboelectric Nanogenerator for Efficiently Harvesting Raindrop Energy
    Liu, Xia
    Yu, Aifang
    Qin, Aimao
    Zhai, Junyi
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (11)