Deep Signal-Dependent Denoising Noise Algorithm

被引:0
|
作者
Zhao, Lanfei [1 ]
Li, Shijun [1 ]
Wang, Jun [2 ]
机构
[1] Harbin Univ Sci & Technol, Higher Educ Key Lab Measuring & Control Technol &, Harbin 150080, Peoples R China
[2] Quzhou Coll Technol, Sch Informat Engn, Quzhou 324000, Peoples R China
关键词
signal-dependent noise; noise parameter estimation; convolutional neural network; image denoising; MODEL;
D O I
10.3390/electronics12051201
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Although many existing noise parameter estimations of image signal-dependent noise have certain denoising effects, most methods are not ideal. There are some problems with these methods, such as poor noise suppression effects, smooth details, lack of flexible denoising ability, etc. To solve these problems, in this study, we propose a deep signal-dependent denoising noise algorithm. The algorithm combines the model method with a convolutional neural network. We use the noise level of the noise image and the noise image together as the input of the convolutional neural network to obtain a wider range of noise levels than the single noise image as the input. In the convolutional neural network, the deep features of the image are extracted by multi-layer residuals, which solves the difficult problem of training. Extensive experiments demonstrate that our noise parameter estimation has good denoising performance.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A nonlinear updating algorithm captures suboptimal inference in the presence of signal-dependent noise
    Egger, Seth W.
    Jazayeri, Mehrdad
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [22] ADAPTIVE POINT ESTIMATION IN SIGNAL-DEPENDENT NOISE
    KASTURI, R
    WALKUP, JF
    KRILE, TF
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1985, 15 (03): : 352 - 359
  • [23] PHOTOREFRACTIVE DEAMPLIFICATION OF ADDITIVE SIGNAL-DEPENDENT NOISE
    KHOURY, J
    FU, J
    CRONINGOLOMB, M
    WOODS, CL
    [J]. OPTICAL ENGINEERING, 1993, 32 (11) : 2877 - 2883
  • [24] A nonlinear updating algorithm captures suboptimal inference in the presence of signal-dependent noise
    Seth W. Egger
    Mehrdad Jazayeri
    [J]. Scientific Reports, 8
  • [25] Fourier and filterbank analyses of signal-dependent noise
    Hirakawa, Keigo
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3517 - 3520
  • [26] IMAGE-RESTORATION IN SIGNAL-DEPENDENT NOISE
    WALKUP, JF
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1986, 3 (13): : P86 - P86
  • [27] On the CFAR Property of the RX Algorithm in the Presence of Signal-Dependent Noise in Hyperspectral Images
    Acito, N.
    Diani, M.
    Corsini, G.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (06): : 3475 - 3491
  • [28] On the Capacity of a Class of Signal-Dependent Noise Channels
    Ghourchian, Hamid
    Aminian, Gholamali
    Gohari, Amin
    Mirmohseni, Mahtab
    Nasiri-Kenari, Masoumeh
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (12) : 7828 - 7846
  • [29] Signal-dependent noise determines motor planning
    Christopher M. Harris
    Daniel M. Wolpert
    [J]. Nature, 1998, 394 : 780 - 784
  • [30] IMAGE RECOVERY FROM SIGNAL-DEPENDENT NOISE
    KASTURI, R
    KRILE, TF
    WALKUP, JF
    [J]. OPTICS LETTERS, 1983, 8 (07) : 401 - 403