On fractional coupled logistic maps: chaos analysis and fractal control

被引:13
|
作者
Wang, Yupin [1 ]
Liu, Shutang [2 ]
Khan, Aziz [3 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R China
[2] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Shandong, Peoples R China
[3] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh 11586, Saudi Arabia
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Caputo delta h-difference; Coupled logistic map; Chaotic attractor; Fractional Julia set; Fractal synchronization; JULIA SET; SYNCHRONIZATION;
D O I
10.1007/s11071-022-08141-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates chaotic and fractal dynamics of fractional coupled logistic maps constructed based on the Caputo fractional h-difference. The chaos of this map, affected by the memory and scale derived from the fractional operator, is examined through phase portrait, "0-1 " test and Lyapunov exponent. Fractal synchronization is achieved by designing a coupled controller between Julia sets generated from two fractional coupled maps with different structures. Numerical simulations are presented to validate the main findings.
引用
收藏
页码:5889 / 5904
页数:16
相关论文
共 50 条
  • [41] SYMMETRICAL AND NONSYMMETRIC COUPLED LOGISTIC MAPS
    SCHULT, RL
    CREAMER, DB
    HENYEY, FS
    WRIGHT, JA
    PHYSICAL REVIEW A, 1987, 35 (07): : 3115 - 3118
  • [42] CRISES AND HYSTERESIS IN COUPLED LOGISTIC MAPS
    GU, Y
    TUNG, M
    YUAN, JM
    FENG, DH
    NARDUCCI, LM
    PHYSICAL REVIEW LETTERS, 1984, 52 (09) : 701 - 704
  • [43] Chaos Control of a Discrete Coupled Logistic Model for the Symbiotic Interaction of Two Species
    Fu Jing-chao
    Zhang Zhong-hua
    Liu Chun-li
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 4115 - 4120
  • [44] Analysis of local fractional coupled Helmholtz and coupled Burgers' equations in fractal media
    Dubey, Ved Prakash
    Singh, Jagdev
    Alshehri, Ahmed M.
    Dubey, Sarvesh
    Kumar, Devendra
    AIMS MATHEMATICS, 2022, 7 (05): : 8080 - 8111
  • [45] Fractional-order singular logistic map: Stability, bifurcation and chaos analysis
    Nosrati, Komeil
    Shafiee, Masoud
    CHAOS SOLITONS & FRACTALS, 2018, 115 : 224 - 238
  • [46] Macroscopic chaos in globally coupled maps
    Cencini, M
    Falcioni, M
    Vergni, D
    Vulpiani, A
    PHYSICA D, 1999, 130 (1-2): : 58 - 72
  • [47] COUPLED MAPS - AN APPROACH TO SPATIOTEMPORAL CHAOS
    STASSINOPOULOS, D
    ALSTROM, P
    PHYSICAL REVIEW A, 1992, 45 (02): : 675 - 691
  • [48] Intermittent transition to chaos in coupled maps
    Kim, SY
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1999, 34 (01) : 75 - 78
  • [49] Macroscopic chaos in globally coupled maps
    Cencini, M.
    Falcioni, M.
    Vergni, D.
    Vulpiani, A.
    Physica D: Nonlinear Phenomena, 130 (01): : 58 - 72
  • [50] Discrete chaos in fractional sine and standard maps
    Wu, Guo-Cheng
    Baleanu, Dumitru
    Zeng, Sheng-Da
    PHYSICS LETTERS A, 2014, 378 (5-6) : 484 - 487