Discrete Dirac reduction of implicit Lagrangian systems with abelian symmetry groups

被引:2
|
作者
Rodriguez Abella, Alvaro [1 ]
Leok, Melvin [2 ]
机构
[1] UAM, CSIC, UC3M, Inst Ciencias Matemat,UCM, Calle Nicolas Cabrera 13-15, Madrid, Spain
[2] Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
来源
JOURNAL OF GEOMETRIC MECHANICS | 2023年 / 15卷 / 01期
关键词
discrete mechanical systems; geometric numerical integration; Lagrange-Poincare-Dirac equations; reduction by symmetries; VARIATIONAL INTEGRATORS; EULER-POINCARE; LIE; MECHANICS; DISCRETIZATION;
D O I
10.3934/jgm.2023013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops the theory of discrete Dirac reduction of discrete Lagrange-Dirac systems with an abelian symmetry group acting on the configuration space. We begin with the linear theory and, then, we extend it to the nonlinear setting using retraction compatible charts. We consider the reduction of both the discrete Dirac structure and the discrete Lagrange-Pontryagin principle, and show that they both lead to the same discrete Lagrange-Poincar ' e-Dirac equations. The coordinatization of the discrete reduced spaces relies on the notion of discrete connections on principal bundles. At last, we demonstrate the method obtained by applying it to a charged particle in a magnetic field, and to the double spherical pendulum.
引用
收藏
页码:319 / 356
页数:38
相关论文
共 50 条
  • [31] On the Heyde theorem for discrete Abelian groups
    Feldman, G. M.
    [J]. STUDIA MATHEMATICA, 2006, 177 (01) : 67 - 79
  • [32] ENTROPY ON DISCRETE ABELIAN-GROUPS
    PETERS, J
    [J]. ADVANCES IN MATHEMATICS, 1979, 33 (01) : 1 - 13
  • [33] TRANSLATION KERNELS ON DISCRETE ABELIAN GROUPS
    EMERSON, WR
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1969, 29 (03) : 527 - &
  • [34] Non-Abelian discrete symmetry for flavors
    Ishimori, Hajime
    Kobayashi, Tatsuo
    Shimizu, Yusuke
    Ohki, Hiroshi
    Okada, Hiroshi
    Tanimoto, Morimitsu
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2013, 61 (4-5): : 441 - 465
  • [35] Harmonic analysis on discrete Abelian groups
    Laczkovich, M
    Székelyhidi, G
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1581 - 1586
  • [36] Spectral synthesis on discrete Abelian groups
    Laczkovich, M.
    Szekelyhidi, L.
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 143 : 103 - 120
  • [37] RANDOM WALKS ON DISCRETE ABELIAN GROUPS
    Myronyuk, Margaryta
    [J]. COLLOQUIUM MATHEMATICUM, 2018, 152 (02) : 273 - 284
  • [38] Filter banks on discrete abelian groups
    Garcia, A. G.
    Hernandez-Medina, M. A.
    Perez-Villalon, G.
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2018, 16 (04)
  • [39] A unified symmetry of Lagrangian systems
    Mei, FX
    Xu, XJ
    Zhang, YF
    [J]. ACTA MECHANICA SINICA, 2004, 20 (06) : 668 - 671
  • [40] A unified symmetry of lagrangian systems
    Mei Fengxiang
    Xu Xuejun
    Zhang Yongfa
    [J]. Acta Mechanica Sinica, 2004, 20 (6) : 668 - 671