Invertible Subalgebras

被引:3
|
作者
Haah, Jeongwan [1 ,2 ]
机构
[1] Microsoft Quantum, Redmond, WA 98052 USA
[2] Microsoft Quantum, Stn Q, Santa Barbara, CA 93106 USA
关键词
D O I
10.1007/s00220-023-04806-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce invertible subalgebras of local operator algebras on lattices. An invertible subalgebra is defined to be one such that every local operator can be locally expressed by elements of the inveritible subalgebra and those of the commutant. On a two-dimensional lattice, an invertible subalgebra hosts a chiral anyon theory by a commuting Hamiltonian, which is believed to be impossible on any full local operator algebra. We prove that the stable equivalence classes of d-dimensional invertible subalgebras form an abelian group under tensor product, isomorphic to the group of all d + 1 dimensional quantum cellular automata (QCA) modulo blending equivalence and shifts. In an appendix, we consider a metric on the group of all QCA on infinite lattices and prove that the metric completion contains the time evolution by local Hamiltonians, which is only approximately locality-preserving. Our metric topology is strictly finer than the strong topology.
引用
收藏
页码:661 / 698
页数:38
相关论文
共 50 条
  • [21] INVERTIBLE MODULES
    BENEISH, E
    [J]. JOURNAL OF ALGEBRA, 1990, 128 (01) : 101 - 125
  • [22] Invertible shuffles
    Wenstrom, LR
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2004, 111 (02): : 169 - 170
  • [23] IS THIS OPERATOR INVERTIBLE
    SEMMES, S
    [J]. LECTURE NOTES IN MATHEMATICS, 1984, 1043 : 328 - 328
  • [24] On invertible algebras
    Edison, Jeremy
    Iovanov, Miodrag C.
    [J]. JOURNAL OF ALGEBRA, 2019, 538 : 1 - 34
  • [25] Invertible Grayscale
    Xia, Menghan
    Liu, Xueting
    Wong, Tien-Tsin
    [J]. SIGGRAPH ASIA'18: SIGGRAPH ASIA 2018 TECHNICAL PAPERS, 2018,
  • [26] INVERTIBLE CONVOLUTIONS
    BERZ, E
    [J]. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (06): : 904 - 911
  • [27] INVERTIBLE SPACES
    DOYLE, PH
    HOCKING, JG
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (10): : 959 - &
  • [28] Invertible authentication
    Fridrich, J
    Gojan, M
    Du, R
    [J]. SECURITY AND WATERMARKING OF MULTIMEDIA CONTENTS III, 2001, 4314 : 197 - 208
  • [29] Invertible classes
    Jain, Sanjay
    Nessel, Jochen
    Stephan, Frank
    [J]. THEORETICAL COMPUTER SCIENCE, 2007, 384 (01) : 49 - 65
  • [30] Invertible classes
    Jain, Sanjay
    Nessel, Jochen
    Stephan, Frank
    [J]. THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2006, 3959 : 707 - 720