Tests of general relativity with gravitational-wave observations using a flexible theory-independent method

被引:33
|
作者
Mehta, Ajit Kumar [1 ]
Buonanno, Alessandra [1 ,2 ]
Cotesta, Roberto [1 ]
Ghosh, Abhirup [1 ]
Sennett, Noah [1 ,2 ]
Steinhoff, Jan [1 ]
机构
[1] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, D-14476 Potsdam, Germany
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
SCALAR THEORIES; BLACK-HOLES; MATTER; DICKE;
D O I
10.1103/PhysRevD.107.044020
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We perform tests of general relativity (GR) with gravitational waves (GWs) from the inspiral stage of compact binaries using a theory-independent framework, which adds generic phase corrections to each multipole of a GR waveform model in frequency domain. This method has been demonstrated on Laser Interferometer Gravitational Wave Observatory-Virgo observations to provide stringent constraints on postNewtonian predictions of the inspiral and to assess systematic biases that may arise in such parametrized tests. Here, we detail the anatomy of our framework for aligned-spin waveform models. We explore the effects of higher modes in the underlying signal on tests of GR through analyses of two unequal-mass simulated binary signals similar to GW190412 and GW190814. We show that the inclusion of higher modes improves both the precision and the accuracy of the measurement of the deviation parameters. Our testing framework also allows us to vary the underlying baseline GR waveform model and the frequency at which the non-GR inspiral corrections are tapered off. We find that to optimize the GR test of high-mass binaries, comprehensive studies would need to be done to determine the best choice of the tapering frequency as a function of the binary's properties. We also carry out an analysis on the binary neutron-star event GW170817 to set bounds on the coupling constant alpha 0 of Jordan-Fierz-Brans-Dicke gravity. We take two plausible approaches; the first approach involves translating directly the "theory-agnostic" bound on dipole-radiation into a bound on alpha 0 for different neutron-star equations of state (EOS). The second "theoryspecific" approach involves reparametrizing the test such that the deviation parameter is alpha 0 itself. The two approaches provide slightly different bounds, namely, alpha 0 < 2 x 10-1 and alpha 0 < 4 x 10-1, respectively, at 68% credible level. These differences arise mainly since in the theory-specific approach the tidal and scalarcharge parameters are fixed coherently for each neutron-star EOS and mass.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Empirical tests of the black hole no-hair conjecture using gravitational-wave observations
    Carullo, Gregorio
    van der Schaaf, Laura
    London, Lionel
    Pang, Peter T. H.
    Tsang, Ka Wa
    Hannuksela, Otto A.
    Meidam, Jeroen
    Agathos, Michalis
    Samajdar, Anuradha
    Ghosh, Archisman
    Li, Tjonnie G. F.
    Del Pozzo, Walter
    Van Den Broeck, Chris
    PHYSICAL REVIEW D, 2018, 98 (10)
  • [22] Testing general relativity with gravitational-wave catalogs: The insidious nature of waveform systematics
    Moore, Christopher J.
    Finch, Eliot
    Buscicchio, Riccardo
    Gerosa, Davide
    ISCIENCE, 2021, 24 (06)
  • [23] Probing lens-induced gravitational-wave birefringence as a test of general relativity
    Goyal, Srashti
    Vijaykumar, Aditya
    Ezquiaga, Jose Maria
    Zumalacarregui, Miguel
    PHYSICAL REVIEW D, 2023, 108 (02)
  • [24] Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog
    Abbott, R.
    Abbott, T. D.
    Abraham, S.
    Acernese, F.
    Ackley, K.
    Adams, A.
    Adams, C.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Akcay, S.
    Allen, G.
    Allocca, A.
    Altin, P. A.
    Amato, A.
    Anand, S.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Angelova, S., V
    Ansoldi, S.
    Antelis, J. M.
    Antier, S.
    Appert, S.
    Arai, K.
    Araya, M. C.
    Areeda, J. S.
    Arene, M.
    Arnaud, N.
    Aronson, S. M.
    Arun, K. G.
    Asali, Y.
    Ascenzi, S.
    Ashton, G.
    Aston, S. M.
    Astone, P.
    Aubin, F.
    Aufmuth, P.
    AultONeal, K.
    Austin, C.
    Avendano, V
    Babak, S.
    Badaracco, F.
    PHYSICAL REVIEW D, 2021, 103 (12)
  • [25] Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors
    Vitale, Salvatore
    PHYSICAL REVIEW LETTERS, 2016, 117 (05)
  • [26] Calibrating the Cosmic Distance Ladder Using Gravitational-wave Observations
    Gupta, Anuradha
    Fox, Derek
    Sathyaprakash, B. S.
    Schutz, B. F.
    ASTROPHYSICAL JOURNAL, 2019, 886 (01):
  • [27] Gravitational wave tests of general relativity with the parameterized post-Einsteinian framework
    Cornish, Neil
    Sampson, Laura
    Yunes, Nicolas
    Pretorius, Frans
    PHYSICAL REVIEW D, 2011, 84 (06):
  • [28] Parameter estimation for tests of general relativity with the astrophysical stochastic gravitational wave background
    Saffer, Alexander
    Yagi, Kent
    PHYSICAL REVIEW D, 2020, 102 (02)
  • [29] Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors
    Gair, Jonathan R.
    Vallisneri, Michele
    Larson, Shane L.
    Baker, John G.
    LIVING REVIEWS IN RELATIVITY, 2013, 16
  • [30] Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors
    Jonathan R. Gair
    Michele Vallisneri
    Shane L. Larson
    John G. Baker
    Living Reviews in Relativity, 2013, 16