Residual LSTM based short-term load forecasting

被引:12
|
作者
Sheng, Ziyu [1 ]
An, Zeyu [1 ]
Wang, Huiwei [1 ]
Chen, Guo [2 ]
Tian, Kun [3 ]
机构
[1] Southwest Univ, Coll Elect Informat Engn, Chongqing 400715, Peoples R China
[2] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[3] Chongqing Jiaotong Univ, State Key Lab Mt Bridge & Tunnel Engn, Chongqing 400074, Peoples R China
关键词
Short-term load forecasting; Deep learning; Deep residual network; Long short-term memory; TIME-SERIES; MODEL; ANN;
D O I
10.1016/j.asoc.2023.110461
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As the modern energy systems is becoming more complex and flexible, accurate load forecasting has been the key to scheduling power to meet customers' needs, load switching, and infrastructure development. In this paper, we propose a neural network framework based on a modified deep residual network (DRN) and a long short-term memory (LSTM) recurrent neural network (RNN) for addressing the short-term load forecasting (STLF) problem. The proposed model not only inherits the DRN's excellent characteristic to avoid vanishing gradient for training deeper neural networks, but also continues the LSTM's strong ability to capture nonlinear patterns for time series forecasting. Moreover, through the dimension weighted units based on attention mechanism, the dimension-wise feature response is adaptively recalibrated by explicitly modeling the interdependencies between dimensions, so that we can jointly improve the performance of the model from three aspects: depth, time and feature dimension. The snapshot ensemble method has also been applied to improve the accuracy and robustness of the proposed model. By implementing multiple sets of experiments on two public datasets, we demonstrate that the proposed model has high accuracy, robustness and generalization capability, and can perform STLF better than the existing mainstream models. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Convolutional residual network to short-term load forecasting
    Ziyu Sheng
    Huiwei Wang
    Guo Chen
    Bo Zhou
    Jian Sun
    Applied Intelligence, 2021, 51 : 2485 - 2499
  • [22] Ensemble Residual Networks for Short-Term Load Forecasting
    Xu, Qingshan
    Yang, Xiaohui
    Huang, Xin
    IEEE ACCESS, 2020, 8 (64750-64759) : 64750 - 64759
  • [23] Short-Term Load Forecasting With Deep Residual Networks
    Chen, Kunjin
    Chen, Kunlong
    Wang, Qin
    He, Ziyu
    Hu, Jun
    He, Jinliang
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (04) : 3943 - 3952
  • [24] Convolutional residual network to short-term load forecasting
    Sheng, Ziyu
    Wang, Huiwei
    Chen, Guo
    Zhou, Bo
    Sun, Jian
    APPLIED INTELLIGENCE, 2021, 51 (04) : 2485 - 2499
  • [25] Short-Term Load Forecasting Based on Deep Neural Networks Using LSTM Layer
    Kwon, Bo-Sung
    Park, Rae-Jun
    Song, Kyung-Bin
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2020, 15 (04) : 1501 - 1509
  • [26] A CNN-LSTM Hybrid Model Based Short-term Power Load Forecasting
    Ren, Chang
    Jia, Li
    Wang, Zhangliang
    2021 POWER SYSTEM AND GREEN ENERGY CONFERENCE (PSGEC), 2021, : 182 - 186
  • [27] Short-Term Load Forecasting of Microgrid Based on TVFEMD-LSTM-ARMAX Model
    Yufeng Yin
    Wenbo Wang
    Min Yu
    Transactions on Electrical and Electronic Materials, 2024, 25 : 265 - 279
  • [28] Short-Term Power Load Forecasting in City Based on ISSA-BiTCN-LSTM
    Chaodong Fan
    Gongrong Li
    Leyi Xiao
    Lingzhi Yi
    Shanghao Nie
    Cognitive Computation, 2025, 17 (1)
  • [29] Short-Term Load Forecasting Based on EEMD-WOA-LSTM Combination Model
    Shao, Lei
    Guo, Quanjie
    Li, Chao
    Li, Ji
    Yan, Huilong
    APPLIED BIONICS AND BIOMECHANICS, 2022, 2022
  • [30] Short-Term Load Forecasting Based on Deep Neural Networks Using LSTM Layer
    Bo-Sung Kwon
    Rae-Jun Park
    Kyung-Bin Song
    Journal of Electrical Engineering & Technology, 2020, 15 : 1501 - 1509