Strong amplification of mid-infrared radiation absorption in nanotube-confined water

被引:1
|
作者
Yang, Rong-Yao [1 ]
Huo, Pei-Ying [1 ]
Zhang, Qi-Lin [2 ,3 ]
Jiang, Yong [4 ]
Jiang, Wei-Zhou [1 ]
机构
[1] Southeast Univ, Sch Phys, Nanjing 211189, Peoples R China
[2] Anhui Polytech Univ, Sch Math Phys & Finance, Wuhu 241000, Peoples R China
[3] Anhui Polytech Univ, Sch Mat Sci & Engn, Wuhu 241000, Peoples R China
[4] Southeast Univ, Sch Chem & Chem Engn, Nanjing 211189, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
CARBON NANOTUBES; SPECTROSCOPY; DYNAMICS; SUPERPERMEATION; TRANSITION; MEMBRANES;
D O I
10.1063/5.0142331
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Energy absorption on a nanometer scale is vital for biochemical and climate systems. This paper reports that a two times amplification in absorption efficiency of mid-infrared (MIR) radiations can be achieved by water molecules confined in carbon nanotubes with a small radius compared to the bulk water absorption. This absorption enhancement is closely associated with the configurational change of water molecules into a unidirectional alignment under the nanotube confinement, which greatly augments the transition probability concerning the MIR absorption. In addition, the effect of confinement due to a (6,6) carbon nanotube is found to be very robust, equivalent to that of a 5 V/nm static electric field. These findings can be used to design energy-efficient nanodevices to modulate the microclimate variables by converting the redundant ambient MIR irradiation into the prompt heat conduction and are instructive for understanding the specific functioning of relevant biological channels.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Recording of mid-infrared radiation in photochromic polymers
    1600, American Inst of Physics, Woodbury, NY, USA (74):
  • [22] Recording of mid-infrared radiation in photochromic polymers
    Weiss, V.
    Friesem, A.A.
    Krongauz, V.A.
    Journal of Applied Physics, 1993, 74 (06): : 4248 - 4250
  • [23] Bracket debonding by mid-infrared laser radiation
    Jelinkova, H.
    Sulc, J.
    Dostalova, T.
    Koranda, P.
    Nemec, M.
    Hofmanova, P.
    LASER PHYSICS LETTERS, 2009, 6 (03) : 222 - 228
  • [24] Mid-infrared strong field ionization angular distributions
    Catoire, F.
    Blaga, C. I.
    Sistrunk, E.
    Muller, H. G.
    Agostini, P.
    DiMauro, L. F.
    LASER PHYSICS, 2009, 19 (08) : 1574 - 1580
  • [25] Strong-field physics with mid-infrared lasers
    Pogorelsky, IV
    SUPERSTRONG FIELDS IN PLASMAS, 2002, 611 : 397 - 408
  • [26] Searching water megamasers by using mid-infrared spectroscopy (I): Possible mid-infrared indicators
    Lam, Man, I
    Walcher, C. Jakob
    Gao, Feng
    Yang, Ming
    Li, Huan
    Hao, Lei
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 506 (04) : 5548 - 5558
  • [27] Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators
    Brar, Victor W.
    Jang, Min Seok
    Sherrott, Michelle
    Lopez, Josue J.
    Atwater, Harry A.
    NANO LETTERS, 2013, 13 (06) : 2541 - 2547
  • [28] Broadband Mid-Infrared Resonances in Aligned Carbon Nanotube Films
    Roberts, John Andris
    Ho, Po-Hsun
    Yu, Shang-Jie
    Schoeche, Stefan
    Luo, Yue
    Wilson, William L.
    Falk, Abram L.
    Fan, Jonathan A.
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [29] Amplification assisted optical parametric oscillator in the mid-infrared region
    Y. H. Liu
    X. J. Lv
    Z. D. Xie
    X. P. Hu
    Y. Yuan
    J. Lu
    L. N. Zhao
    G. Zhao
    S. N. Zhu
    Applied Physics B, 2012, 106 : 267 - 270
  • [30] Amplification of mid-infrared lasers via backscattering in magnetized plasmas
    Shi, Yuan
    Fisch, Nathaniel J.
    PHYSICS OF PLASMAS, 2019, 26 (07)